Not quite what I was trying to say.  The process generates a random uniform
number between 0 and 1 and compares to a specific conditional probability.
It is looking for this in particular:

random number < Pr( rain(station=i,day=d)=1 | rain(station=i,day=d-1)=0 &
rain(station=j,day=d)=0 & rain(station=k,day=d)=0)

In this particular example, if the random number is less than the
probability the value for station i and day d will be given as 1, otherwise
it will be zero.

There are 8 possible combinations.  i is the station to be generated, j and
k are the two stations most strongly correlated with station i.  Stations j
and k have already been generated in the example I gave previously.  So I
want to know given what is going on at stations j and k during day d and at
station i for day d-1 if the value for station i day d will be 1 or 0.

Hope this provides some clarification.
A

On Thu, Aug 12, 2010 at 3:21 AM, Petr PIKAL <petr.pi...@precheza.cz> wrote:

> Hi
>
> without toy example it is rather complicated to check your function. So
> only few remarks:
>
> Instead of generating 1 random number inside a loop generate whole vector
> of random numbers outside a loop and choose a number
>
> Do not mix ifelse with if. ifelse is intended to work with whole vector.
>
> Work with matrices instead of data frames whenever possible if speed is an
> issue.
>
> If I understand correctly you want to put 1 or 0 into one column based on:
>
> previous value in the same column
> comparison of some random number with predefined probabilities in vector
> of 6 values
>
> So here is vectorised version of your 4 ifs based on assumption
>
> 0 in col1 0 in col 2 = 5
> 0 in col1 1 in col 2 = 9
> 1 in col1 0 in col 2 = 6
> 1 in col1 1 in col 2 =10
>
>
> col1<-sample(1:2, 20, replace=T)
> col2<-sample(c(4,8), 20, replace=T)
>
> col1+col2
>  [1]  5  6  9  6  6  5  9 10  9  9  6  9 10  6 10  9 10  9  5  5
> cols<-as.numeric(as.factor(col1+col2))
>
> cols
>  [1] 1 2 3 2 2 1 3 4 3 3 2 3 4 2 4 3 4 3 1 1
>
>
> And here is computed comparison of six values p (ortho obs used) with 20
> generated random values
>
> ran<-runif(20)
> p<-runif(8)
> comparison <- outer(ran,p, "<")
>       [,1]  [,2]  [,3] [,4]  [,5]  [,6]  [,7]  [,8]
>  [1,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
>  [2,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
>  [3,] FALSE  TRUE FALSE TRUE FALSE  TRUE  TRUE FALSE
>  [4,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
>  [5,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
>  [6,] FALSE  TRUE FALSE TRUE FALSE  TRUE FALSE FALSE
>  [7,] FALSE  TRUE FALSE TRUE FALSE  TRUE FALSE FALSE
>  [8,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
>  [9,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
> [10,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
> [11,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
> [12,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
> [13,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
> [14,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
> [15,]  TRUE  TRUE  TRUE TRUE  TRUE  TRUE  TRUE  TRUE
> [16,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
> [17,] FALSE  TRUE FALSE TRUE FALSE  TRUE FALSE FALSE
> [18,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
> [19,] FALSE  TRUE FALSE TRUE  TRUE  TRUE  TRUE  TRUE
> [20,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
>
>
> Now the only what you need to put in loop is to select appropriate column
> from matrix comparison based on value on cols vector and 0 or 1 in
> previous row of station column.
>
> Something like (untested)
>
> gen.log<-rep(NA, nrow(genmat)-1)
>
> for (i in 2:nrow(genmat)) {
>
> gen.log[i] <- if( genmat[i-1, num] ==0)  comparison[i, cols[i]] else
> comparison[i,cols[i+5]]
>
> }
>
> genmat[2:nrow(genmat), num] <- gen.log*1
>
> Regards
> Petr
>
>
> r-help-boun...@r-project.org napsal dne 11.08.2010 18:35:37:
>
> > Hello Everyone!
> >
> > Here's what I'm trying to do.  I'm working on generating occurrences of
> > precipitation based upon precipitation occurrence for a station during
> the
> > previous day and two stations that have already been generated by joint
> > probablities and 1st order Markov chains or by the same generation
> process.
> > This has to be done for each remaining stations for each month.
> >
> > > genmat # 7 stations in this example, line_before is the climatology of
> the
> > last day of the previous month. Stations 4 and 6 have been generated
> already
> > in this example
> >             [,1] [,2] [,3] [,4] [,5] [,6] [,7]
> > line_before    1    1    1    0    1    1    1
> >               NA   NA   NA    1   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    1   NA    0   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    1   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    0   NA    0   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    1   NA    1   NA
> >               NA   NA   NA    0   NA    0   NA
> > > num # station to generate
> > [1] 2
> > > use1 # 1st station to use in generation
> > [1] 6
> > > use2 # 2nd station to use in generation
> > [1] 4
> >
> > > genmat = event.gen2(genmat,use1,use2,num,ortho_obs_used) # Generation
> > function shown below
> > > genmat # genmat - after it has gone through station 2
> >             [,1] [,2] [,3] [,4] [,5] [,6] [,7]
> > line_before    1    1    1    0    1    1    1
> >               NA    0   NA    1   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    1   NA    0   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    1   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    0   NA    1   NA    1   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    1   NA    0   NA    1   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    0   NA    0   NA    0   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    1   NA    1   NA    1   NA
> >               NA    0   NA    0   NA    0   NA
> >
> > Where event.gen2 is this function:
> >
> > event.gen2 = function(genmat,use1,use2,num,ortho_obs_used){
> >
> > for(r in 2:nrow(genmat)){
> >
> > ran = runif(1,0,1)
> >
> > if(genmat[r,use1]==0 & genmat[r,use2]==0){
> >
> genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[1],1,
> > 0),ifelse(ran<ortho_obs_used$Pr[4],1,0))
> > }
> >
> > if(genmat[r,use1]==0 & genmat[r,use2]==1){
> >
> genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[2],1,
> > 0),ifelse(ran<ortho_obs_used$Pr[5],1,0))
> > }
> >
> > if(genmat[r,use1]==1 & genmat[r,use2]==0){
> >
> genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[3],1,
> > 0),ifelse(ran<ortho_obs_used$Pr[7],1,0))
> > }
> >
> > if(genmat[r,use1]==1 & genmat[r,use2]==1){
> >
> genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[6],1,
> > 0),ifelse(ran<ortho_obs_used$Pr[8],1,0))
> > }
> >
> > gc()
> > }
> >
> > genmat
> >
> > }
> >
> > ####
> >
> > ortho_obs_used is a data frame that contains the probablity of
> precipitation
> > occurring on a given day for a specific set of condtions.
> > For instance ortho_obs_used$Pr[1] is the probablity of rain at station s
> for
> > day d, given that there was no rain at station s for day d-1 and no rain
> at
> > either of the other two stations for day d.
> >
> > The event.gen2 function handles the generation, and it runs quickly for
> the
> > 5 remaining stations and one month, but I have to run this for 317
> stations
> > over 48 months or more, and it becomes a really bad bottleneck.  So what
> I'd
> > like to know is if there is anyway that I can re-write this function to
> work
> > without a loop.  I couldn't find anything from previous posts about
> getting
> > out of loops where the previous iteration is required to determine the
> next
> > calculation.
> >
> > Sorry for the length of the post, but I thought it best to try to
> explain
> > what I was doing first, before diving into my question
> >
> > Thanks in advance!
> >
> > Adrienne Wootten
> > Graduate Research Assistant/Environmental Meteorologist
> > M.S. Atmospheric Science
> > NC State University
> > State Climate Office of North Carolina
> > Raleigh, NC 27695
> >
> >    [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help@r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
>
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to