Not quite what I was trying to say. The process generates a random uniform number between 0 and 1 and compares to a specific conditional probability. It is looking for this in particular:
random number < Pr( rain(station=i,day=d)=1 | rain(station=i,day=d-1)=0 & rain(station=j,day=d)=0 & rain(station=k,day=d)=0) In this particular example, if the random number is less than the probability the value for station i and day d will be given as 1, otherwise it will be zero. There are 8 possible combinations. i is the station to be generated, j and k are the two stations most strongly correlated with station i. Stations j and k have already been generated in the example I gave previously. So I want to know given what is going on at stations j and k during day d and at station i for day d-1 if the value for station i day d will be 1 or 0. Hope this provides some clarification. A On Thu, Aug 12, 2010 at 3:21 AM, Petr PIKAL <petr.pi...@precheza.cz> wrote: > Hi > > without toy example it is rather complicated to check your function. So > only few remarks: > > Instead of generating 1 random number inside a loop generate whole vector > of random numbers outside a loop and choose a number > > Do not mix ifelse with if. ifelse is intended to work with whole vector. > > Work with matrices instead of data frames whenever possible if speed is an > issue. > > If I understand correctly you want to put 1 or 0 into one column based on: > > previous value in the same column > comparison of some random number with predefined probabilities in vector > of 6 values > > So here is vectorised version of your 4 ifs based on assumption > > 0 in col1 0 in col 2 = 5 > 0 in col1 1 in col 2 = 9 > 1 in col1 0 in col 2 = 6 > 1 in col1 1 in col 2 =10 > > > col1<-sample(1:2, 20, replace=T) > col2<-sample(c(4,8), 20, replace=T) > > col1+col2 > [1] 5 6 9 6 6 5 9 10 9 9 6 9 10 6 10 9 10 9 5 5 > cols<-as.numeric(as.factor(col1+col2)) > > cols > [1] 1 2 3 2 2 1 3 4 3 3 2 3 4 2 4 3 4 3 1 1 > > > And here is computed comparison of six values p (ortho obs used) with 20 > generated random values > > ran<-runif(20) > p<-runif(8) > comparison <- outer(ran,p, "<") > [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] > [1,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [2,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > [3,] FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE > [4,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > [5,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > [6,] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE > [7,] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE > [8,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [9,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [10,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > [11,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > [12,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [13,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > [14,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [15,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE > [16,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [17,] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE > [18,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [19,] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE > [20,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE > > > Now the only what you need to put in loop is to select appropriate column > from matrix comparison based on value on cols vector and 0 or 1 in > previous row of station column. > > Something like (untested) > > gen.log<-rep(NA, nrow(genmat)-1) > > for (i in 2:nrow(genmat)) { > > gen.log[i] <- if( genmat[i-1, num] ==0) comparison[i, cols[i]] else > comparison[i,cols[i+5]] > > } > > genmat[2:nrow(genmat), num] <- gen.log*1 > > Regards > Petr > > > r-help-boun...@r-project.org napsal dne 11.08.2010 18:35:37: > > > Hello Everyone! > > > > Here's what I'm trying to do. I'm working on generating occurrences of > > precipitation based upon precipitation occurrence for a station during > the > > previous day and two stations that have already been generated by joint > > probablities and 1st order Markov chains or by the same generation > process. > > This has to be done for each remaining stations for each month. > > > > > genmat # 7 stations in this example, line_before is the climatology of > the > > last day of the previous month. Stations 4 and 6 have been generated > already > > in this example > > [,1] [,2] [,3] [,4] [,5] [,6] [,7] > > line_before 1 1 1 0 1 1 1 > > NA NA NA 1 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 1 NA 0 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 1 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 0 NA 0 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 1 NA 1 NA > > NA NA NA 0 NA 0 NA > > > num # station to generate > > [1] 2 > > > use1 # 1st station to use in generation > > [1] 6 > > > use2 # 2nd station to use in generation > > [1] 4 > > > > > genmat = event.gen2(genmat,use1,use2,num,ortho_obs_used) # Generation > > function shown below > > > genmat # genmat - after it has gone through station 2 > > [,1] [,2] [,3] [,4] [,5] [,6] [,7] > > line_before 1 1 1 0 1 1 1 > > NA 0 NA 1 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 1 NA 0 NA > > NA 1 NA 1 NA 1 NA > > NA 1 NA 1 NA 1 NA > > NA 1 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 1 NA 1 NA 1 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 1 NA 1 NA 1 NA > > NA 0 NA 0 NA 0 NA > > NA 1 NA 1 NA 1 NA > > NA 0 NA 1 NA 1 NA > > NA 1 NA 1 NA 1 NA > > NA 0 NA 0 NA 0 NA > > NA 1 NA 0 NA 1 NA > > NA 0 NA 0 NA 0 NA > > NA 0 NA 0 NA 0 NA > > NA 1 NA 1 NA 1 NA > > NA 1 NA 1 NA 1 NA > > NA 1 NA 1 NA 1 NA > > NA 0 NA 0 NA 0 NA > > > > Where event.gen2 is this function: > > > > event.gen2 = function(genmat,use1,use2,num,ortho_obs_used){ > > > > for(r in 2:nrow(genmat)){ > > > > ran = runif(1,0,1) > > > > if(genmat[r,use1]==0 & genmat[r,use2]==0){ > > > genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[1],1, > > 0),ifelse(ran<ortho_obs_used$Pr[4],1,0)) > > } > > > > if(genmat[r,use1]==0 & genmat[r,use2]==1){ > > > genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[2],1, > > 0),ifelse(ran<ortho_obs_used$Pr[5],1,0)) > > } > > > > if(genmat[r,use1]==1 & genmat[r,use2]==0){ > > > genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[3],1, > > 0),ifelse(ran<ortho_obs_used$Pr[7],1,0)) > > } > > > > if(genmat[r,use1]==1 & genmat[r,use2]==1){ > > > genmat[r,num]<-ifelse(genmat[r-1,num]==0,ifelse(ran<ortho_obs_used$Pr[6],1, > > 0),ifelse(ran<ortho_obs_used$Pr[8],1,0)) > > } > > > > gc() > > } > > > > genmat > > > > } > > > > #### > > > > ortho_obs_used is a data frame that contains the probablity of > precipitation > > occurring on a given day for a specific set of condtions. > > For instance ortho_obs_used$Pr[1] is the probablity of rain at station s > for > > day d, given that there was no rain at station s for day d-1 and no rain > at > > either of the other two stations for day d. > > > > The event.gen2 function handles the generation, and it runs quickly for > the > > 5 remaining stations and one month, but I have to run this for 317 > stations > > over 48 months or more, and it becomes a really bad bottleneck. So what > I'd > > like to know is if there is anyway that I can re-write this function to > work > > without a loop. I couldn't find anything from previous posts about > getting > > out of loops where the previous iteration is required to determine the > next > > calculation. > > > > Sorry for the length of the post, but I thought it best to try to > explain > > what I was doing first, before diving into my question > > > > Thanks in advance! > > > > Adrienne Wootten > > Graduate Research Assistant/Environmental Meteorologist > > M.S. Atmospheric Science > > NC State University > > State Climate Office of North Carolina > > Raleigh, NC 27695 > > > > [[alternative HTML version deleted]] > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.