Dear All, I am trying to estimate a mixed effect model with random slope with npmlreg. To make my question clear, I use the sample data set that was used in the vignettes (as part of the package "nlme").
----------------------------------------------------------------------------------------------------------------------------------------- > vc2 <- allvc(height ~ age, random=~age|Subject, data=Oxboys, > random.distribution="np", k=3) 1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..10 .. EM algorithm met convergence criteria at iteration # 10 Disparity trend plotted. EM Trajectories plotted. > summary(vc2) Call: allvc(formula = height ~ age, random = ~age | Subject, data = Oxboys, k = 3, random.distribution = "np") Coefficients: Estimate Std. Error t value age 7.919030 0.4065465 19.478782 MASS1 138.588240 0.2827517 490.141113 MASS2 149.249701 0.1921859 776.590184 MASS3 158.909797 0.2627202 604.863195 MASS1:age -2.350977 0.5966915 -3.940021 MASS2:age -1.701525 0.5034540 -3.379703 Mixture proportions: MASS1 MASS2 MASS3 0.2313332 0.5007243 0.2679425 Component distribution - MLE of sigma: 3.586 Random effect distribution - standard deviation: 7.161265 -2 log L: 1315 Convergence at iteration 10 ----------------------------------------------------------------------------------------------------------------------------------------- My question is: how to interpret the the random slope coefficients "age", "MASS1:age", and "MASS2:age"? Does it mean that the effect of age is 7.919030 in the third component, -2.350977 in the first component, and -1.701525 in the second, or something else? Many thanks. Best, Shige ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.