I am trying to recreate an analysis that has been done by another group (in SAS I believe). I'm stuck on one part, I think because my stats knowledge is lacking, and while it's OT, I'm hoping someone here can help.
Given this dataframe; foo*<-*structure(list(OBS = structure(1:18, .Label = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54"), class = "factor"), NOM = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0.05", "0.1", "1"), class = "factor"), RUN = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L), .Label = c("1", "2", "3", "4", "5", "6"), class = "factor"), CALC = c(0.04989, 0.04872, 0.04544, 0.05645, 0.06516, 0.0622, 0.04868, 0.05006, 0.04746, 0.05574, 0.04442, 0.04742, 0.05508, 0.0593, 0.04898, 0.06373, 0.05537, 0.04674)), .Names = c("OBS", "NOM", "RUN", "CALC"), row.names = c(NA, 18L), class = "data.frame") I want to perform an anova on CALC~RUN, and based on that calculate the 95% confidence interval. However the interval produced by the earlier analysis is [0.04741, 0.05824]. Is there some way to calculate a confidence interval based on an ANOVa that I'm completely missing ? > nrow(foo) [1] 18 > mean(foo$CALC) [1] 0.05282444 > fooaov<-aov(CALC~RUN,data=foo) > print(fooaov) Call: aov(formula = CALC ~ RUN, data = foo) Terms: RUN Residuals Sum of Squares 0.0003991420 0.0003202277 Deg. of Freedom 5 12 Residual standard error: 0.005165814 Estimated effects may be unbalanced > print(summary(fooaov)) Df Sum Sq Mean Sq F value Pr(>F) RUN 5 0.00039914 7.9828e-05 2.9914 0.05565 . Residuals 12 0.00032023 2.6686e-05 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > model.tables(fooaov,type="means",se=TRUE) Tables of means Grand mean 0.05282444 RUN RUN 1 2 3 4 5 6 0.04802 0.06127 0.04873 0.04919 0.05445 0.05528 Standard errors for differences of means RUN 0.004218 replic. 3 > t.test(foo$CALC,conf.level=0.95) One Sample t-test data: foo$CALC t = 34.4524, df = 17, p-value < 2.2e-16 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: 0.04958955 0.05605934 sample estimates: mean of x 0.05282444 Thanks Paul. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.