On 6/30/2010 1:14 AM, Daniel Chen wrote: > Hi, > > I am a long time SPSS user but new to R, so please bear with me if my > questions seem to be too basic for you guys. > > I am trying to figure out how to analyze survey data using logistic > regression with multiple imputation. > > I have a survey data of about 200,000 cases and I am trying to predict the > odds ratio of a dependent variable using 6 categorical independent variables > (dummy-coded). Approximatively 10% of the cases (~20,000) have missing data > in one or more of the independent variables. The percentage of missing > ranges from 0.01% to 10% for the independent variables. > > My current thinking is to conduct a logistic regression with multiple > imputation, but I don't know how to do it in R. I searched the web but > couldn't find instructions or examples on how to do this. Since SPSS is > hopeless with missing data, I have to learn to do this in R. I am new to R, > so I would really appreciate if someone can show me some examples or tell me > where to find resources.
Here is an example using the Amelia package to generate imputations and the mitools and mix packages to make the pooled inferences. titanic <- read.table("http://lib.stat.cmu.edu/S/Harrell/data/ascii/titanic.txt", sep=',', header=TRUE) set.seed(4321) titanic$sex[sample(nrow(titanic), 10)] <- NA titanic$pclass[sample(nrow(titanic), 10)] <- NA titanic$survived[sample(nrow(titanic), 10)] <- NA library(Amelia) # generate multiple imputations library(mitools) # for MIextract() library(mix) # for mi.inference() titanic.amelia <- amelia(subset(titanic, select=c('survived','pclass','sex','age')), m=10, noms=c('survived','pclass','sex'), emburn=c(500,500)) allimplogreg <- lapply(titanic.amelia$imputations, function(x){glm(survived ~ pclass + sex + age, family=binomial, data = x)}) mice.betas.glm <- MIextract(allimplogreg, fun=function(x){coef(x)}) mice.se.glm <- MIextract(allimplogreg, fun=function(x){sqrt(diag(vcov(x)))}) as.data.frame(mi.inference(mice.betas.glm, mice.se.glm)) # Or using only mitools for pooled inference betas <- MIextract(allimplogreg, fun=coef) vars <- MIextract(allimplogreg, fun=vcov) summary(MIcombine(betas,vars)) > Thank you! > > Daniel > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. -- Chuck Cleland, Ph.D. NDRI, Inc. (www.ndri.org) 71 West 23rd Street, 8th floor New York, NY 10010 tel: (212) 845-4495 (Tu, Th) tel: (732) 512-0171 (M, W, F) fax: (917) 438-0894 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.