Hi,

perhaps you can send X.csv in a private message. It is easier to have a reproducible example than reading the code line by line.

Best,
Uwe Ligges




On 24.06.2010 00:27, Dennis wrote:
Dear R users:

I was trying to fit a HMM with mixture of Gaussian into the dataset, and I
tried to implement it by R2Winbugs. But I got the following errer.
*
Error in FUN(X[[1L]], ...) :
   .C(..): 'type' must be "real" for this format*

Does anybody know what's the problem? Does R2Winbugs accept some matrix as
inits? I would really appreciate your help. Thank you very much.

The attached are codes of R and Winbugs.
-------------------------------------------------------------------------------------------------------------------------
library(R2WinBUGS)
library(MCMCpack)
library(coda)

## the input of the dataset

X=read.csv("X.csv",header=FALSE)
X=as.matrix(X)    # transform the data into matrix

## parameter setting

N=nrow(X)        # # of servers
T=ncol(X)        # Time
m=sum(X)/(N*T)    # mean of the training set

M=matrix(m,nrow=N,ncol=T)
s=sum((X-M)^2)/(N*T)    # std of the training set

K=3                # # of clusters
alpha=0.5            # parameter for Dirichlet distn
sigmae=0.5            # var of cluster mean mu
q1=rep(1/K,K)        # prior for Z(n,1)

## MCMC sampling

data=list("X","m","s","N","T","K","alpha","sigmae","q1")
inits=function(){list(a0=rbeta(1,1,1),
qx=matrix(rgamma(K^2,alpha,1),nrow=K), sigma0.r=rbeta(K,1,1))}
model.sim=bugs(data,inits,model.file="model.txt",parameters=c("mu","sigma"),
n.chains=3,n.iter=3500,n.burnin=500,n.thin=1,bugs.directory="C:/Users/t-wec/Desktop/WinBUGS14",codaPkg=T,debug=T)
mcmcout=read.bugs(model.sim)
summary(mcmcout)
------------------------------------------------------------------------------------------------------------------------
model
{
     # cluster parameters mu and tau

     tau1<- (1-a*a)*taue
     taue<- 1/sigmae

     for (k in 1:K)
     {
         # cluster mean mu

         mu[k,1] ~ dnorm(m,tau1)

         for (t in 2:T)
         {
             mu[k,t] ~ dnorm(meanmu[k,t],taue)
             meanmu[k,t]<- m*(1-a)+a*mu[k,t-1]
         }

         # cluster varicance tau

         sigma0.r[k] ~ dbeta(1,1)
         sigma.r[k]<- s*sigma0.r[k]
         sigma[k]<- sigma.r[k]*sigma.r[k]
         tau[k]<- 1/sigma[k]
     }

     # cluster indicator Z and observation X

     for (n in 1:N)
     {
         Z[n,1] ~ dcat(q1[1:K])
         X[n,1] ~ dnorm(mu[Z[n,1],1],tau[Z[n,1]])

         for (t in 2:T)
         {
             Z[n,t] ~ dcat(q[Z[n,t-1],1:K])
             X[n,t] ~ dnorm(mu[Z[n,t],t],tau[Z[n,t]])
         }
     }

     # prior on transition matrix Q
     # each row of Q has a Dirichlet prior realized by Gamma

     for (k in 1:K)
     {
         for (l in 1:K)
         {
             q[k,l]<- qx[k,l]/sum(qx[k,1:K])
             qx[k,l] ~ dgamma(alpha,1)
         }
     }

     # prior on regression coefficient: uniform on [-1,1]

     a0 ~ dbeta(1,1)
     a<- a0*2-1
}


Wei Chen

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to