Hello, I'm trying to obtain a maximum likelyhood estimate of a gaussian model by the MLE command, as I did with a Poisson model: x <- rep(1:2,each=500) y <- rnorm(length(x), mean=10+3*x, sd=1) glm1 <- glm(y ~ x , family=gaussian()) library(stats4) func1 <- function(alfa=10, beta=3, sigma=1) -sum(dnorm(y, mean=alfa+beta*x, sd=sigma), log=FALSE) mle(func1, method = "BFGS")
func2 <- function(alfa=10, beta=3, sigma=1) -sum((1/sqrt(2*pi*sigma^2))*exp(-0.5*(((y-alfa-beta*x)^2)/sigma^2))) mle(func2, method = "BFGS") I don't understand why it doesn't work. Have you some suggestions? Thank you so much for your help Antonio Gasparrini Public and Environmental Health Research Unit (PEHRU) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK Office: 0044 (0)20 79272406 Mobile: 0044 (0)79 64925523 www.lshtm.ac.uk/pehru/ [EMAIL PROTECTED] [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.