One way is to turn the 'warnings' into 'errors' and then trap the error: > library(survival) > > time= c(4,3,1,1,2,2,3,3,2) > status=c(1,0,0,0,1,1,1,1,1) > TIME=Surv(time,status) > x= cbind(c(0,2,1,1,0,0,0,2,0),c(0,2,1,1,0,0,0,0,0)) > > results=matrix(NA,ncol=3,nrow=ncol(x)) > colnames(results)=c("coef","se","p") > > old.warn <- options(warn=2) > for(i in 1:ncol(x)){ + + aa <- try(fit <- summary(coxph(TIME~x[,i]))) + if (class(aa) == "try-error"){ + print(paste("i =", i, "had error")) + next # skip iteration + } + + results[i,1]=fit$coef[1] + results[i,2]=fit$coef[3] + results[i,3]=fit$coef[5] + rm(fit) + } Error in fitter(X, Y, strats, offset, init, control, weights = weights, : (converted from warning) Loglik converged before variable 1 ; beta may be infinite. [1] "i = 2 had error" > options(old.warn) > >
On Dec 17, 2007 10:16 AM, xinyi lin <[EMAIL PROTECTED]> wrote: > Hi, > > I want to fit multiple cox models using the coxph() function. To do > this, I use a for-loop and save the relevant results in a separate > matrix. In the example below, only two models are fitted (my actual > matrix has many more columns), one gives a warning message, while the > other does not. Right now, I see all the warning message(s) after the > for-loop is completed but have no idea which model gave the warning > message. Is there a way in which the warning message can be captured > and saved (i.e. as a binary variable, having value 1 if there was a > warning message and 0 otherwise)? I can't possibly fit the models one > by one (and see if they give a warning message) as I have many of them > to fit. > > > > library(survival) > Loading required package: splines > > time= c(4,3,1,1,2,2,3,3,2) > > status=c(1,0,0,0,1,1,1,1,1) > > TIME=Surv(time,status) > > x= cbind(c(0,2,1,1,0,0,0,2,0),c(0,2,1,1,0,0,0,0,0)) > > > > results=matrix(NA,ncol=3,nrow=ncol(x)) > > colnames(results)=c("coef","se","p") > > > > for(i in 1:ncol(x)){ > + fit=summary(coxph(TIME~x[,i])) > + results[i,1]=fit$coef[1] > + results[i,2]=fit$coef[3] > + results[i,3]=fit$coef[5] > + rm(fit) > + } > Warning message: > Loglik converged before variable 1 ; beta may be infinite. in: > fitter(X, Y, strats, offset, init, control, weights = weights, > > > > results > coef se p > [1,] -0.5117033 5.647385e-01 0.36 > [2,] -10.2256937 1.146168e+04 1.00 > > > > #To see which model gave the warning message > > coxph(TIME~x[,1]) > Call: > coxph(formula = TIME ~ x[, 1]) > > > coef exp(coef) se(coef) z p > x[, 1] -0.512 0.6 0.565 -0.906 0.36 > > Likelihood ratio test=0.97 on 1 df, p=0.324 n= 9 > > coxph(TIME~x[,2]) > Call: > coxph(formula = TIME ~ x[, 2]) > > > coef exp(coef) se(coef) z p > x[, 2] -10.2 3.62e-05 11462 -0.000892 1 > > Likelihood ratio test=2.51 on 1 df, p=0.113 n= 9 > Warning message: > Loglik converged before variable 1 ; beta may be infinite. in: > fitter(X, Y, strats, offset, init, control, weights = weights, > > > Thank you, > Cindy Lin > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > -- Jim Holtman Cincinnati, OH +1 513 646 9390 What is the problem you are trying to solve? ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.