Bob Green schrieb: > > > dates <- read.csv("c:\\dates.csv",header=T) > > dates > v1 v2 > 1 12/12/1978 12/12/2005 > 2 23/01/1965 23/09/2001 > 3 24/12/2004 16/03/2007 > 4 3/03/2003 4/04/2004 > 5 8/11/2006 1/05/2007 > > > class(dates$v1) > [1] "factor" > > class(dates$v2) > [1] "factor" > > What about chron library:
dts <- dates(c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")) dts # [1] 02/27/92 02/27/92 01/14/92 02/28/92 02/01/92 tms <- times(c("23:03:20", "22:29:56", "01:03:30", "18:21:03", "16:56:26")) tms # [1] 23:03:20 22:29:56 01:03:30 18:21:03 16:56:26 x <- chron(dates = dts, times = tms) x # [1] (02/27/92 23:03:19) (02/27/92 22:29:56) (01/14/92 01:03:30) # [4] (02/28/92 18:21:03) (02/01/92 16:56:26) # We can add or subtract scalars (representing days) to dates or # chron objects: c(dts[1], dts[1] + 10) # [1] 02/27/92 03/08/92 dts[1] - 31 # [1] 01/27/92 Knut ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.