I'm getting unexpected results from the coxph function when using weights from counter-matching. For example, the following code produces a parameter estimate of -1.59 where I expect 0.63:
d2 = structure(list(x = c(1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1), wt = c(5, 42, 40, 4, 43, 4, 42, 4, 44, 5, 38, 4, 39, 4, 4, 37, 40, 4, 44, 5, 45, 5, 44, 5), riskset = c(1L, 1L, 4L, 4L, 6L, 6L, 12L, 12L, 13L, 13L, 19L, 19L, 23L, 23L, 31L, 31L, 42L, 42L, 45L, 45L, 70L, 70L, 93L, 93L), cc = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 ), pseudotime = rep(1,24)), .Names = c("x", "wt", "riskset", "cc", "pseudotime"), class = "data.frame", row.names=1:24) coxph( Surv(pseudotime, cc) ~ x + strata(riskset), weights=wt, robust=T, method="breslow",data=d2) I'm expecting a value of about 0.63 to 0.64 based on the data source (simulated) and the following hand-coded MLE: negloglik = function(beta,dat) { dat$wexb = dat$wt * exp(dat$x * beta) agged = aggregate(dat$wexb,list(riskset=dat$riskset),sum) names(agged)[2] = "denom" dat = merge(dat[dat$cc==1,],agged,by="riskset") -sum(log(dat$wexb)-log(dat$denom)) } nlm(negloglik,0,hessian=T,dat=d2) Am I misunderstanding the meaning of case weights in the coxph function? The help file is pretty terse. Scott Bartell, PhD Assistant Professor Department of Epidemiology University of California, Irvine ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.