Dear Pedro, you might be interested in the demo "StationaryRegressorDistr" of package "distr".
library(distr) demo("StationaryRegressorDistr") hth, Matthias [EMAIL PROTECTED] wrote: > Thanks Prof. Ripley. > > My apologies for not including the code. > > Below I illustrate my point using the GLD package. > > Thank you very much for your time. > > Kind Regards, > > Pedro N. Rodriguez > > > # Code begins > > # Simulate an ar(1) process > # x = 0.05 + 0.64*x(t-1) + e > > # Create the vector x > x <- vector(length=1000) > > #simulate the own risk > e <- rnorm(1000) > > #Set the coefficient > beta <- 1.50 > > # set an initial value > x[1] <- 5 > > #Fill the vector x > for(i in 2:length(x)) > { > x[i] <- 0.05 + beta*x[i-1] + e[i] > } > > #Check the AR(1) > simulated_data_ar <- arima(x,order=c(1,0,0)) > simulated_data_ar > > #Using the G Lambda Distribution to fit the distribution. > library(gld) > resul1 <- starship(x,optim.method="Nelder-Mead") > lambdas1 <- resul1$lambda > > #Plot the Distribution > plotgld(lambdas1[1],lambdas1[2],lambdas1[3],lambdas1[4]) > > #Random Deviates from GLD > x_sim <- > rgl(1000,lambdas1[1],lambdas1[2],lambdas1[3],lambdas1[4]) > > #Fit an AR(1) > gld_simulated <- arima(x_sim,order=c(1,0,0)) > gld_simulated > > #Code ends > > > -----Original Message----- > From: Prof Brian Ripley [mailto:[EMAIL PROTECTED] > Sent: Wednesday, November 28, 2007 11:37 AM > To: Rodriguez, Pedro > Cc: [EMAIL PROTECTED] > Subject: Re: [R] Simulate an AR(1) process via distributions? (without > specifying a model specification) > > On Wed, 28 Nov 2007, [EMAIL PROTECTED] wrote: > > >> Is it possible to simulate an AR(1) process via a distribution? >> > > Any distribution *of errors*, yes. Of the process values, not in > general. > > >> I have simulated an AR(1) process the usual way (that is, using a >> > model > >> specification and using the random deviates in the error), and used >> > the > >> generated time series to estimate 3- and 4-parameter distributions >> > (for > >> instance, GLD). However, the random deviates generated from these >> distributions do not follow the specified AR process. >> > > How do you know that? Please give us the reproducible example we asked > for (in the posting guide, at the bottom of every message), and we > should > be able to explain it to you. > > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.