Assuming that the data are sampled at equal intervals, you can do the following:
A <- matrix(scan("h:/test/junk.txt"), ncol=2, by=T) # I read your data in # the following plots show that the 3rd set of data (in green) is smoothest plot(A[1:11,1], A[1:11,2], type="o") lines(A[12:22,1], A[12:22,2], type="o", col=2) lines(A[23:33,1], A[23:33,2], type="o", col=3) # Here are some numerical tests # Roughly, average first-derivative sqrt(mean(diff(A[1:11,2])^2)) sqrt(mean(diff(A[12:22,2])^2)) sqrt(mean(diff(A[23:33,2])^2)) # Roughly, average second-derivative sqrt(mean(diff(A[1:11,2], diff=2)^2)) sqrt(mean(diff(A[12:22,2], diff=2)^2)) sqrt(mean(diff(A[23:33,2], diff=2)^2)) It is clear that the "new smoothed" data is the smoothest. Ravi. ---------------------------------------------------------------------------- ------- Ravi Varadhan, Ph.D. Assistant Professor, The Center on Aging and Health Division of Geriatric Medicine and Gerontology Johns Hopkins University Ph: (410) 502-2619 Fax: (410) 614-9625 Email: [EMAIL PROTECTED] Webpage: http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html ---------------------------------------------------------------------------- -------- -----Original Message----- From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] On Behalf Of Al Lelopath Sent: Tuesday, November 27, 2007 11:20 AM To: r-help@r-project.org Subject: [R] measure smoothness I have 3 sets of Cartesian data, one is 'original' data and the other 2 are "smoothed"data. The smoothed data is the result of applying a smoothing algorithm to the original.One set of smoothed data is the 'old' algorithm and the other set is the 'new' algorithm. Does R have the capability of telling me which data is "smoother"? Example data (subsets of entire data set): original: 61 1.419584402 62 1.487019923 63 1.436887012 64 1.39522855 65 1.455934713 66 1.51774951 67 1.603945531 68 1.67847891 69 1.559326003 70 1.57563213 71 1.591873853 old smoothed: 61 1.337874627 62 1.391745721 63 1.387506435 64 1.382959722 65 1.413494505 66 1.445366725 67 1.474782643 68 1.474782643 69 1.474782643 70 1.474782643 71 1.500106199 new smoothed: 61 1.399345513 62 1.416106263 63 1.451252527 64 1.486278253 65 1.505360173 66 1.522991093 67 1.535206073 68 1.546861126 69 1.589831189 70 1.608288145 71 1.620107467 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.