Hello, EXAMPLE ##Create time series bb_500 = scan("my_file.dat") ts <- ts(bb_500, frequency=168)
ts Time Series: Start = c(1, 1) End = c(3, 164) Frequency = 168 [1] 61 60 60 59 58 58 58 58 58 61 64 65 65 64 64 64 63 63 62 61 60 60 60 59 58 [26] 58 58 57 57 57 57 56 57 57 58 59 59 59 60 60 60 61 60 60 60 60 60 59 58 57 [51] 57 56 55 55 55 56 60 71 76 78 77 78 80 80 80 79 76 71 68 66 65 64 63 62 61 [76] 60 60 59 59 60 63 73 77 79 78 78 80 81 81 80 77 71 67 67 66 65 63 62 61 60 [101] 60 60 60 60 64 74 78 80 79 79 81 81 81 80 76 68 66 65 65 64 63 62 61 60 60 [126] 60 59 60 64 73 77 79 79 78 80 80 80 80 76 70 67 66 65 64 63 61 61 60 60 59 [151] 59 60 63 73 77 78 78 78 79 80 80 79 74 69 65 64 63 62 61 60 60 59 58 58 58 [176] 58 59 61 63 64 63 63 63 63 64 63 63 61 60 60 59 59 58 58 57 56 55 55 54 54 [201] 54 54 55 55 56 56 57 57 58 58 58 58 57 57 57 57 57 56 55 55 54 54 54 55 60 [226] 72 76 77 77 77 79 80 80 79 76 70 66 65 64 63 62 61 61 60 60 59 58 59 63 72 [251] 76 77 77 77 79 80 80 79 76 71 66 65 64 63 62 61 60 58 58 57 57 58 62 71 75 [276] 76 77 76 78 79 79 77 74 69 65 64 63 62 62 60 59 58 58 58 58 58 62 69 75 78 [301] 78 73 64 61 58 57 56 56 55 54 53 53 53 53 53 57 69 74 75 75 75 76 75 76 75 [326] 71 65 60 58 54 53 53 52 52 51 51 49 50 51 52 55 58 60 60 59 59 60 60 59 59 [351] 57 57 56 56 55 55 54 54 54 53 53 53 53 53 53 54 54 55 55 55 56 56 56 56 56 [376] 56 56 55 55 55 54 54 53 53 53 52 53 57 68 73 74 74 74 76 76 77 76 72 67 64 [401] 63 62 61 60 59 59 58 58 57 57 58 61 71 75 76 76 76 78 78 78 77 74 69 65 64 [426] 63 62 59 58 56 53 51 51 51 48 53 67 73 75 77 78 78 78 74 68 65 63 63 62 61 [451] 59 59 58 57 57 57 57 61 71 75 77 77 77 78 79 79 78 75 69 66 65 64 63 61 60 [476] 59 58 58 58 58 59 62 72 76 77 78 78 78 79 79 78 74 68 64 63 62 61 60 59 58 ##Find the best model using auto.arima() from package forecast system.time(fit.500<-auto.arima(ts, d = NA, D = NA, max.p = 2, max.q = 2, max.P = 1, max.Q = 1, max.order = 5, start.p=0, start.q=0, start.P=0, start.Q=0, stationary = FALSE, ic = c("aic","aicc", "bic"), stepwise=FALSE, trace=TRUE)) ARIMA(0,0,0)(0,1,0)[168] : 1943.825 ARIMA(0,0,0)(0,1,0)[168] with drift : 1929.839 ARIMA(0,0,0)(0,1,1)[168] : 1945.061 ARIMA(0,0,0)(0,1,1)[168] with drift : 1937.518 ARIMA(0,0,0)(1,1,0)[168] : 1945.061 ARIMA(0,0,0)(1,1,0)[168] with drift : 2163.634 ARIMA(0,0,0)(1,1,1)[168] : 1947.061 ARIMA(0,0,0)(1,1,1)[168] with drift : 1932.075 ARIMA(0,0,1)(0,1,0)[168] : 1614.503 ARIMA(0,0,1)(0,1,0)[168] with drift : 1603.030 ARIMA(0,0,1)(0,1,1)[168] : 1615.747 ARIMA(0,0,1)(0,1,1)[168] with drift : 1608.540 ARIMA(0,0,1)(1,1,0)[168] : 1615.747 ARIMA(0,0,1)(1,1,0)[168] with drift : 1603.401 ARIMA(0,0,1)(1,1,1)[168] : 1617.747 ARIMA(0,0,1)(1,1,1)[168] with drift : 1605.401 ARIMA(0,0,2)(0,1,0)[168] : 1427.109 ARIMA(0,0,2)(0,1,0)[168] with drift : 1462.511 ARIMA(0,0,2)(0,1,1)[168] : 1427.255 ARIMA(0,0,2)(0,1,1)[168] with drift : 1468.507 ARIMA(0,0,2)(1,1,0)[168] : 1427.255 ARIMA(0,0,2)(1,1,0)[168] with drift : 1418.519 ARIMA(0,0,2)(1,1,1)[168] : 1429.255 ARIMA(0,0,2)(1,1,1)[168] with drift : 1420.519 ARIMA(1,0,0)(0,1,0)[168] : 1375.344 ARIMA(1,0,0)(0,1,0)[168] with drift : 1377.365 ARIMA(1,0,0)(0,1,1)[168] : 1374.959 ARIMA(1,0,0)(0,1,1)[168] with drift : 1376.827 ARIMA(1,0,0)(1,1,0)[168] : 1374.96 ARIMA(1,0,0)(1,1,0)[168] with drift : 1376.828 ARIMA(1,0,0)(1,1,1)[168] : 1376.960 ARIMA(1,0,0)(1,1,1)[168] with drift : 1378.828 ARIMA(1,0,1)(0,1,0)[168] : 1243.233 ARIMA(1,0,1)(0,1,0)[168] with drift : 1244.937 ARIMA(1,0,1)(0,1,1)[168] : 1241.591 ARIMA(1,0,1)(0,1,1)[168] with drift : 1243.213 ARIMA(1,0,1)(1,1,0)[168] : 1241.592 ARIMA(1,0,1)(1,1,0)[168] with drift : 1243.213 ARIMA(1,0,1)(1,1,1)[168] : 1243.591 ARIMA(1,0,1)(1,1,1)[168] with drift : 1245.214 ARIMA(1,0,2)(0,1,0)[168] : 1229.605 ARIMA(1,0,2)(0,1,0)[168] with drift : 1e+20 ARIMA(1,0,2)(0,1,1)[168] : 1e+20 * ARIMA(1,0,2)(0,1,1)[168] with drift : 1e+20 * ARIMA(1,0,2)(1,1,0)[168] : 1e+20 * ARIMA(1,0,2)(1,1,0)[168] with drift : 1e+20 * ARIMA(1,0,2)(1,1,1)[168] : 1e+20 * ARIMA(1,0,2)(1,1,1)[168] with drift : 1e+20 * ARIMA(2,0,0)(0,1,0)[168] : 1205.130 ARIMA(2,0,0)(0,1,0)[168] with drift : 1204.676 ARIMA(2,0,0)(0,1,1)[168] : 1e+20 * ARIMA(2,0,0)(0,1,1)[168] with drift : 1e+20 * ARIMA(2,0,0)(1,1,0)[168] : 1e+20 * ARIMA(2,0,0)(1,1,0)[168] with drift : 1e+20 * ARIMA(2,0,0)(1,1,1)[168] : 1e+20 * ARIMA(2,0,0)(1,1,1)[168] with drift : 1e+20 * ARIMA(2,0,1)(0,1,0)[168] : 1204.315 ARIMA(2,0,1)(0,1,0)[168] with drift : 1204.458 ARIMA(2,0,1)(0,1,1)[168] : 1e+20 * ARIMA(2,0,1)(0,1,1)[168] with drift : 1e+20 * ARIMA(2,0,1)(1,1,0)[168] : 1e+20 * ARIMA(2,0,1)(1,1,0)[168] with drift : 1e+20 * ARIMA(2,0,1)(1,1,1)[168] : 1e+20 * ARIMA(2,0,1)(1,1,1)[168] with drift : 1e+20 * ARIMA(2,0,2)(0,1,0)[168] : 1204.012 ARIMA(2,0,2)(0,1,0)[168] with drift : 1e+20 ARIMA(2,0,2)(0,1,1)[168] : 1e+20 * ARIMA(2,0,2)(0,1,1)[168] with drift : 1e+20 * ARIMA(2,0,2)(1,1,0)[168] : 1e+20 * ARIMA(2,0,2)(1,1,0)[168] with drift : 1e+20 * ## user system elapsed ##19041.573 3806.364 22849.199 -> ~6 hours I'm know from search the help page that stepwise=FALSE and trace=TRUE make the function slower, but in this phase I would like to see what values are picked in each interaction. Sorry for any mistake on the creation off the post!! João Santos Prof Brian Ripley wrote: > > This is not about slowness of Linux nor of R but of a particular function > in a contributed package. Few of us are familiar with that package, and > you have not given a reproducible example. Please do as the posting guide > asked and talk directly to the maintainer (who may well not read this > list). > > I've altered the subject line to something less inappropriate. > > On Fri, 9 Nov 2007, Joao Santos wrote: > >> >> Hello All, >> >> Sorry everybody for another message on this topic but I don't understand >> the >> times off execution that I have. >>> From my search in the forum I found that linux old be better to this >>> kind of >> operation, so now I using a dualCore 2.33GHz with 8Gb RAM but the times >> off >> execution don´t decrease. >> >> Once again the function and the times and I get in linux: >> system.time(fit_2323v_168f<-auto.arima(regts.ts, d = NA, D = NA, max.p = >> 2, >> max.q = 2, >> max.P = 1, max.Q = 1, max.order = 5, >> start.p=0, start.q=0, start.P=0, start.Q=0, >> stationary = FALSE, ic = c("aic","aicc", "bic"), >> stepwise=FALSE, trace=TRUE)) >> user system elapsed >> 38389.75 3786.29 22849.73 >> >> >> There is some optimization that could be done? >> >> >> Thanks in advance for the replies!!! >> >> >> João Santos >> >> Joao Santos wrote: >>> >>> Hello again, >>> >>> Sorry but the code that I insert wasn't write. Should be like this: >>> >>> fit_2323v_168f<-auto.arima(regts.ts, d = NA, D = NA, max.p = 2, max.q = >>> 2, >>> max.P = 1, max.Q = 1, max.order = 5, >>> start.p=0, start.q=0, start.P=0, start.Q=0, >>> stationary = FALSE, ic = c("aic","aicc", "bic"), >>> stepwise=TRUE, trace=TRUE) >>> >>> Sorry for the SPAM!! >>> >>> João Santos >>> >>> >>> Joao Santos wrote: >>>> >>>> Hello, >>>> >>>> I using the fuction auto.arima() from package forecast to predict the >>>> values of p,d,q and P,D,Q. >>>> My problem is the execution time of this function, for example, a time >>>> series with 2323 values with seasonality to the week take over 8 hours >>>> to >>>> execute all the possibilities. >>>> I using a computer with Windows XP, a processor Intel Core2 Duo T7300 >>>> and 2Gb of RAM. >>>> >>>> fit_2323v_168f<-auto.arima(regts.ts, d = 1, D = 1, max.p = 2, max.q = >>>> 2, >>>> max.P = 1, max.Q = 1, max.order = 5, >>>> start.p=0, start.q=0, start.P=0, start.Q=0, >>>> stationary = FALSE, ic = c("aic","aicc", >>>> "bic"), >>>> stepwise=TRUE, trace=TRUE) >>>> >>>> It is any configuration to speed-up this? >>>> >>>> >>>> Thanks in advance! >>>> >>>> João Santos >>>> >>>> >>>> >>> >>> >> >> > > -- > Brian D. Ripley, [EMAIL PROTECTED] > Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ > University of Oxford, Tel: +44 1865 272861 (self) > 1 South Parks Road, +44 1865 272866 (PA) > Oxford OX1 3TG, UK Fax: +44 1865 272595 > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > -- View this message in context: http://www.nabble.com/Help-me-please...Large-execution-time-in-auto.arima%28%29-function-tf4771610.html#a13668367 Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.