I don't think that the loop-part puts a great penalty in this case; however, it'd be better to convert the data.frames to matrices, since matrix indexing is faster, e.g.,
# I presume that you only want to keep the p-values mat.A <- data.matrix(df.A) mat.B <- data.matrix(df.B) pvalues <- numeric(200) for (i in 1:200) { pvalues[i] <- wilcox.test(x = mat.A[, i], y = mat.B[, i])$p.value } I hope it helps. Best, Dimitris ---- Dimitris Rizopoulos Ph.D. Student Biostatistical Centre School of Public Health Catholic University of Leuven Address: Kapucijnenvoer 35, Leuven, Belgium Tel: +32/(0)16/336899 Fax: +32/(0)16/337015 Web: http://med.kuleuven.be/biostat/ http://www.student.kuleuven.be/~m0390867/dimitris.htm ----- Original Message ----- From: "Diogo Alagador" <[EMAIL PROTECTED]> To: <r-help@r-project.org> Sent: Tuesday, November 06, 2007 12:30 PM Subject: [R] wilcox test on two data frames Hi all, Basically I have 2 data frames with equal dimension and I want to apply the wilcox.test to compare columns in the same position (i.e. 1st of df.A with 1st of df.B, 2nd of df.A with 2nd of df.B,...). Anyone give me an hint on this, as I think it is nicer to avoid loops, specially for huge dataframes (30000 x 200) Thanks in advance, Diogo André Alagador Portugal [[alternative HTML version deleted]] -------------------------------------------------------------------------------- > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > Disclaimer: http://www.kuleuven.be/cwis/email_disclaimer.htm ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.