Hi R user, I am using the gamm() function of the mgcv-package. Now I would like to decide on the random effects to include in the model. Within a GAMM framework, is it allowed to compare the following two models
inv_1<-gamm(y~te(sat,inv),data=daten_final, random=list(proband=~1)) inv_2<-gamm(y~te(sat,inv),data=daten_final, random=list(proband=~sat)) with a likelihood ratio test for a traditional GLMM, like this: anova(inv_1$lme, inv_2$lme) The output is as follows: Model df AIC BIC logLik Test L.Ratio p-value inv_2$lme 1 10 21495.90 21557.59 -10737.95 inv_1$lme 2 8 23211.12 23260.46 -11597.56 1 vs 2 1719.214 <.0001 Or is this not in tune with the automatic smoothing parameter selection (i.e. it is not exactly the same for both model alternatives)? If not, how can I decide on the selection of random effects? Thanks in advance for your help. Best regards Maik Dipl.-Kfm. Maik Eisenbeiß Marketing Centrum Münster Institut für Anlagen und Systemtechnologien Westfälische Wilhelms-Universität Münster Am Stadtgraben 1315 48143 Münster Telefon: +49 251 83-29920 Telefax: +49 251 83-22903 E-Mail: [EMAIL PROTECTED] Web: http://www.marketing-centrum.de/ias ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.