If I understand your question, see the 'predict.glm' funtion. On 17/10/2007, Samuel Okoye <[EMAIL PROTECTED]> wrote: > > Hello, > suppose one has the following values > x1 <- rnorm(10,5,1) > x2 <- rgamma(10,5,1) > y <- rnorm(10,4,1) > mydat <- data.frame(y,x1,x2) > then one can use glm like > mod <- glm(y~x1+x2, data=mydat, family=gaussian) > But how could I estimate y_hat? > Thanks alot! > Sam > > > --------------------------------- > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >
-- Henrique Dallazuanna Curitiba-Paraná-Brasil 25° 25' 40" S 49° 16' 22" O [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.