Hi, Jim. Actually you need to have ad "data.frame" object of define X and Y variables in it. DATA$X must contain all data for X varibales (DATA$NIR in example) DATA$Y response variable(s) for your X matrix data: (DATA$density in example)
For example you have X variables in matrix and one Y variables as vector: > X <- matrix(rnorm(100),10,5) > Y <- c(1:10) Now create data.frame (SampN variable isn't essential for plsr model, but it's easier to form a data frame so): > plsDATA <- data.frame(SampN=c(1:nrow(X))) > plsDATA$X <- X > plsDATA$Y <- as.matrix(Y) > str (plsDATA) 'data.frame': 10 obs. of 3 variables: $ SampN: int 1 2 3 4 5 6 7 8 9 10 $ X : num [1:10, 1:5] 1.330 1.025 -1.931 0.552 0.126 ... $ Y : int 1 2 3 4 5 6 7 8 9 10 > dim (plsDATA) [1] 10 3 > dim (plsDATA$X) [1] 10 5 > dim (plsDATA$Y) [1] 10 1 And fit a model: > library (pls) > plsr (X~Y,data=plsDATA) Partial least squares regression, fitted with the kernel algorithm. Call: plsr(X ~ Y, data = plsDATA) On Tuesday 16 October 2007 21:23:21 Bricklemyer, Ross S wrote: > Jim, > > I tried str(yarn). I received the following output: > > 'data.frame': 28 obs. of 3 variables: > $ NIR : num [1:28, 1:268] 3.07 3.07 3.08 3.08 3.10 ... > ..- attr(*, "dimnames")=List of 2 > .. ..$ : NULL > .. ..$ : NULL > $ density: num 100.0 80.2 79.5 60.8 60.0 ... > $ train : logi TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE > TRUE ... > > I think the important structure for my application is in the NIR line. > Now that I "know" what the structure is, what does it mean, and how do I > get my data into the same structure? > > Ross -- Andris Jankevics Assistant Department of Medicinal Chemistry Latvian Institute of Organic Synthesis Aizkraukles 21, LV-1006, Riga, Latvia ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.