1. Stepwise selection might be inadequate for many problems.
2. You get a warning if an estimation step for one possible model does 
not work.
3. In your data, many variables do have variance 0 (identical values) 
within several classes. You might want to choose another kind of model, 
perhaps by dichotomizing at least some variables or so and applying a 
tree based method ...

Best wishes,
Uwe Ligges



Silvia Lomascolo wrote:
> I use Windows, R version 2.5.1
> 
> When I try to run stepclass (klaR) I get an error message/warning saying:
> 
> 1: error(s) in modeling/prediction step in: cv.rate(vars = c(model, tryvar),
> data = data, grouping = grouping,   ...
> 
> Actually, I look 16 warnings of this type.  Can anyone tell me what this
> means? 
> Also, it returns only 2 out of the 79 variables as important, however these
> variables don't make any biological sense... Might this be a problem of my
> coding?
> 
> Here's some code and sample matrix:
> 
>> library(klaR)
>> var <- read.table("C:\\Documents and Settings\\My
> Documents\\silvia\\data\\variables.txt", header=T) ## matrix of 79 variables
>> disp<- read.table("C:\\Documents and Settings\\My
> Documents\\silvia\\data\\disperser.txt", header=T) ## vector defining my
> groups
>> disp<- as.factor(disp$disperser)
>> data.step <- stepclass(var, disp, "lda", improvement = 0.05)
> 
> Sample matrix: 
> 
> var:
> P5.38 P6.45   P6.55   P6.63   P6.78   P6.87   P7.12   P7.42   P8.10   P8.88   
> P9.09   P9.30
> P9.49 P9.55
> 0.00  11.08   3.16    0.76    0.40    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.64    0.00
> 0.00  0.00    0.00    0.00    0.00    1.63    0.00    6.89    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    4.78    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    131.56  0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  5.05    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    16.00   9.59
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.88  0.48    0.89    0.00    0.00    0.00    0.00    0.16    0.00    0.00    
> 0.00    0.00    0.21    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.75    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    5.41    20.62   8.13    
> 8.87    8.27    12.51   0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  133.24  0.00    0.73    0.00    0.00    0.00    0.00    1.34    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    1.32
> 0.00  1.81    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 7.26  8.16    1.50    0.00    0.00    0.00    1.97    1.28    0.00    0.00    
> 0.00    1.16    0.00    0.00
> 0.00  1.48    0.22    0.00    0.00    0.00    0.00    0.00    1.80    0.66    
> 0.47    0.47    0.75    0.00
> 0.00  1.34    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    1.14    0.00
> 0.00  72.65   103.26  1.09    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.82  0.00    0.00    0.00    0.00    0.00    4.79    0.00    0.00    0.00    
> 0.00    11.44   2.33    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    3.13    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.83    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    23.14   0.00    0.00    0.00    1.19    4.81    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    7.92    0.00    14.29   36.64   0.00    82.87   0.00    0.00    
> 0.00    0.00    0.00    0.00
> 0.00  0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    
> 0.00    0.00    0.00    0.00
> 
> disp:
> disperser
> 1
> 1
> 1
> 1
> 1
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 2
> 3
> 3
> 4
> 4
> 4
> 4
> 4
> 4
> 4
> 4
> 4
> 4
> 
>

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to