formulas have environments and since most model structures include the formula the entire environment of the formula will be pulled in.
On 10/1/07, hadley wickham <[EMAIL PROTECTED]> wrote: > Why are you using eval and not: > > path <- paste( "C://Program Files//R//R-2.5.1//arima//",nn, sep="") > save(x, file = path) > > ? > > It's possible that extra environments are getting saved. (Someone > with more knowledge of eval might suggest a better solution, but that > might be a good place to start) > > Hadley > > > > > pp=paste( "save( x, file=", sQuote(pp),")", sep="" ) > > eval(parse(text=pp)) > > > On 10/1/07, Lloyd Lubet <[EMAIL PROTECTED]> wrote: > > Dear Sir: > > > > When I try to save large and very complex recursive objects with some > > components containing models (such as the output from arima or lm ), > > the resulting file sizes increase by 4 meg per save. > > > > example directory: > > > > amex 8 meg > > argentina 12 meg > > australia 16 meg > > ... > > > > Moreover, I am unable to read these file objects back into R. > > I note that readBin and writeBin are only for single mode data such as > > numeric. > > > > Here is a section of my program or script: > > > > SaveObj = function( x, nn ) { > > > > pp=paste( "C://Program Files//R//R-2.5.1//arima//",nn, sep="") > > > > pp=paste( "save( x, file=", sQuote(pp),")", sep="" ) > > eval(parse(text=pp)) > > } # end of function: SaveObj > > load( file="C://Program Files//R//R-2.5.1//arima//amex" ) > > > > > > > > > > allArima=function( yy, popSize=10, generations=5 ){ > > > > nn = names(yy) > > for( i in 1:dim(yy)[2] ) { > > > > print( paste( " iter: ", i, "name: ", " ", names(yy)[i],sep="") ) > > > > # data AVY > > Note lagxy <- CreateColumnSpace( yy, column = i, startLag = 1, > > endLag = 8, exclude=T, by=1 ) > > > > xx <- xy$xx > > > > response = xy$response > > > > t.index = xy$indx > > > > > > > > > > # genetically select predictor column space > > > > result = intGa( response =response, ... , > > > > FUN = LM, monitor = F, monitorFun = nn.Monitor, > > > > Evaluator = Std.Eval, wildCardPct = 0.10, > > > > parm1 = 4, parm2 = 1, parm3 = 3 ) > > > > x.model=result$bestModel > > > > SaveObj( x=x.model, nn=nn[i] ) > > > > rm(result,x.model) > > > > } # end for > > > > > > return( formulaLst ) > > > > } # end of allArimaVery Sincerely,Lloyd Lubet > > > > [[alternative HTML version deleted]] > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > > -- > http://had.co.nz/ > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.