> system.time( lm( t(y) ~ x ) ) user system elapsed 0.008 0.000 0.010
On Wed, 19 Sep 2007, [EMAIL PROTECTED] wrote: > Folks, > > I have a 3000 x 4 matrix (y), which I need to regress row-by-row against a > 4-vector (x) to create a > matrix lm.y of intercepts and slopes. To illustrate: > > y <- matrix(rnorm(12000), ncol = 4) > x <- c(1/12, 3/12, 6/12, 1) > > system.time(lm.y <- t(apply(y, 1, function(z) lm(z ~ x)$coefficient))) > [1] 44.72 18.00 69.52 NA NA > > Takes more than a minute to do (and I need to do many similar regressions > a day). > > Is there a more efficient way of handling this? > > I'm running R 2.4.1 on Windows XP Service Pack 2 on a Intel Xeon dual-core > 2.66GHz with 3GB RAM. > > Thanks very much, > > Murali > > > --------------------------------------------------------------------------- > This message (including any attachments) is confidential and...{{dropped}} > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > Charles C. Berry (858) 534-2098 Dept of Family/Preventive Medicine E mailto:[EMAIL PROTECTED] UC San Diego http://famprevmed.ucsd.edu/faculty/cberry/ La Jolla, San Diego 92093-0901 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.