> On Jun 8, 2018, at 11:52 AM, Hadley Wickham <h.wick...@gmail.com> wrote: > > On Fri, Jun 8, 2018 at 11:38 AM, Berry, Charles <ccbe...@ucsd.edu> wrote: >> >> >>> On Jun 8, 2018, at 10:37 AM, Hervé Pagès <hpa...@fredhutch.org> wrote: >>> >>> Also the TRUEs cause problems if some dimensions are 0: >>> >>>> matrix(raw(0), nrow=5, ncol=0)[1:3 , TRUE] >>> Error in matrix(raw(0), nrow = 5, ncol = 0)[1:3, TRUE] : >>> (subscript) logical subscript too long >> >> OK. But this is easy enough to handle. >> >>> >>> H. >>> >>> On 06/08/2018 10:29 AM, Hadley Wickham wrote: >>>> I suspect this will have suboptimal performance since the TRUEs will >>>> get recycled. (Maybe there is, or could be, ALTREP, support for >>>> recycling) >>>> Hadley >> >> >> AFAICS, it is not an issue. Taking >> >> arr <- array(rnorm(2^22),c(2^10,4,4,4)) >> >> as a test case >> >> and using a function that will either use the literal code >> `x[i,,,,drop=FALSE]' or `eval(mc)': >> >> subset_ROW4 <- >> function(x, i, useLiteral=FALSE) >> { >> literal <- quote(x[i,,,,drop=FALSE]) >> mc <- quote(x[i]) >> nd <- max(1L, length(dim(x))) >> mc[seq(4,length=nd-1L)] <- rep(TRUE, nd-1L) >> mc[["drop"]] <- FALSE >> if (useLiteral) >> eval(literal) >> else >> eval(mc) >> } >> >> I get identical times with >> >> system.time(for (i in 1:10000) subset_ROW4(arr,seq(1,length=10,by=100),TRUE)) >> >> and with >> >> system.time(for (i in 1:10000) >> subset_ROW4(arr,seq(1,length=10,by=100),FALSE)) > > I think that's because you used a relatively low precision timing > mechnaism, and included the index generation in the timing. I see: > > arr <- array(rnorm(2^22),c(2^10,4,4,4)) > i <- seq(1,length = 10, by = 100) > > bench::mark( > arr[i, TRUE, TRUE, TRUE], > arr[i, , , ] > ) > #> # A tibble: 2 x 1 > #> expression min mean median max n_gc > #> <chr> <bch:t> <bch:t> <bch:tm> <bch:tm> <dbl> > #> 1 arr[i, TRUE,… 7.4µs 10.9µs 10.66µs 1.22ms 2 > #> 2 arr[i, , , ] 7.06µs 8.8µs 7.85µs 538.09µs 2 > > So not a huge difference, but it's there.
Funny. I get similar results to yours above albeit with smaller differences. Usually < 5 percent. But with subset_ROW4 I see no consistent difference. In this example, it runs faster on average using `eval(mc)' to return the result: > arr <- array(rnorm(2^22),c(2^10,4,4,4)) > i <- seq(1,length=10,by=100) > bench::mark(subset_ROW4(arr,i,FALSE), subset_ROW4(arr,i,TRUE))[,1:8] # A tibble: 2 x 8 expression min mean median max `itr/sec` mem_alloc n_gc <chr> <bch:tm> <bch:tm> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> 1 subset_ROW4(arr, i, FALSE) 28.9µs 34.9µs 32.1µs 1.36ms 28686. 5.05KB 5 2 subset_ROW4(arr, i, TRUE) 28.9µs 35µs 32.4µs 875.11µs 28572. 5.05KB 5 > And on subsequent reps the lead switches back and forth. Chuck ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel