Dear R-Devel List,

I have installed R 3.4.3 with the patch applied on our cluster and ran a 
*real-world* job of one of our users to confirm that the patch works to my 
satisfaction. Here are the results.

The original was a series of jobs, all essentially doing the same stuff using 
bootstrapped data, so for the original there is more data and I show the 
arithmetic mean with standard deviation. The confirmation with the patched R 
was only a single instance of that series of jobs.

## Job Efficiency

The job efficiency is defined as (this is what the `qacct-efficiency` tool 
below does):

```
efficiency = cputime / cores / wallclocktime * 100%
```

In simpler words: how well did the job utilize its CPU cores. It shows the 
percentage of time the job was actually doing stuff, as opposed to the 
difference:

```
wasted = 100% - efficiency
```

... which, essentially, tells us how much of the resources were wasted, i.e. 
CPU cores just idling, without being used by anyone. We care a lot about that 
because, for our scientific computing cluster, wasted resources is like burning 
money.

### original

This is the entire series from our job accounting database, filteres the 
successful jobs, calculates efficiency and then shows the average and standard 
deviation of the efficiency:

```
$ qacct -j 4433299 | qacct-success | qacct-efficiency | meansd
n=945 ∅ 61.7276 ± 7.78719
```

This is the entire series from our job accounting database, filteres the 
successful jobs, calculates efficiency and does sort of a histogram-like 
binning before calculation of mean and standard deviation (to get a more 
detailed impression of the distribution when standard deviation of the previous 
command is comparatively high):

```
$ qacct -j 4433299 | qacct-success | qacct-efficiency | meansd-bin -w 10 | sort 
-gk1 | column -t
10  -  20  ->  n=3    ∅  19.21666666666667   ±  0.9112811494447459
20  -  30  ->  n=6    ∅  26.418333333333333  ±  2.665996374091058
30  -  40  ->  n=12   ∅  35.11583333333334   ±  2.8575783082671196
40  -  50  ->  n=14   ∅  45.35285714285715   ±  2.98623361591005
50  -  60  ->  n=344  ∅  57.114593023255814  ±  2.1922005551774415
60  -  70  ->  n=453  ∅  64.29536423841049   ±  2.8334788433963856
70  -  80  ->  n=108  ∅  72.95592592592598   ±  2.5219474143639276
80  -  90  ->  n=5    ∅  81.526              ±  1.2802265424525452
```

I have attached an example graph from our monitoring system of a single 
instance in my previous mail. There you can see that the load balancing does 
not actually work, i.e. same as `parLapply`. This reflects in the job 
efficiency.

### patch applied

This is the single instance I used to confirm that the patch works:

```
$ qacct -j 4562202 | qacct-efficiency
97.36
```

The graph from our monitoring system is attached. As you can see, the load 
balancing works to a satisfying degree and the efficiency is well above 90% 
which was what I had hoped for :-)

## Additional Notes

The list used in this jobs `parLapplyLB` is 5812 elements long. With the 
`splitList`-chunking from the patch, you'll get 208 lists of about 28 elements 
(208 chunks of size 28). The job ran on 28 CPU cores and had a wallclock time 
of 120351.590 seconds, i.e. 33.43 hours. Thus, the function we apply to our 
list takes about 580 seconds per list element, i.e. about 10 minutes. I 
suppose, for that runtime, we would get even better load balancing if we would 
reduce the chunk size even further, maybe even down to 1, thus getting our 
efficiency even closer to 100%.

Of course, for really short-running functions, a higher chunk size may be more 
efficient because of the overhead. In our case, the overhead is negligible and 
that is why the low chunk size works really well. In contrast, for smallish 
lists with short-running functions, you might not even need load balancing and 
`parLapply` suffices. It only becomes an issue, when the runtime of the 
function is high and / or varying.

In our case, the entire runtime of the entire series of jobs was:

```
$ qacct -j 4433299 | awk '$1 == "wallclock" { sum += $2 } END { print sum, 
"seconds" }'
4.72439e+09 seconds
```

Thats about 150 years on a single core or 7.5 years on a 20 core server! Our 
user was constantly using about 500 cores, so this took about 110 days. If you 
compare this to my 97% efficiency example, the jobs could have been finished in 
75 days instead ;-)

## Upcoming Patch

If this patch gets applied to the R code base (and I hope it will :-)) my 
colleague and I will submit another patch that adds the chunk size as an 
optional parameter to all off the load balancing functions. With that 
parameter, users of these functions *can* decide for themselves which chunk 
size they prefer for their code. As mentioned before, the most efficient chunk 
size depends on the used functions runtime, which is the only thing R does not 
know and users really should be allowed to specify explicitly. The default of 
this new optional parameter would be the one we used here and this would make 
that upcoming patch fully source-compatible.

Best Regards

On 02/12/2018 08:08 PM, Christian Krause wrote:
> Dear R-Devel List,
> 
> **TL;DR:** The function **parLapplyLB** of the parallel package has 
> [reportedly][1] (see also attached RRD output) not
> been doing its job, i.e. not actually balancing the load. My colleague Dirk 
> Sarpe and I found the cause of the problem
> and we also have a patch to fix it (attached). A similar fix has also been 
> provided [here][2].
> 
> [1]: 
> https://stackoverflow.com/questions/38230831/why-does-parlapplylb-not-actually-balance-load
> [2]: https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=16792
> 
> 
> ## The Call Chain
> 
> First, we traced the relevant R function calls through the code, beginning 
> with `parLapplyLB`:
> 
> 1.  **parLapplyLB:** clusterApply.R:177, calls **splitList**, then 
> **clusterApplyLB**
> 2.  **splitList:** clusterApply.R:157
> 3.  **clusterApplyLB:** clusterApply.R:87, calls **dynamicClusterApply**
> 4.  **dynamicClusterApply:** clusterApply.R:39
> 
> 
> ## splitList
> 
> We used both our whiteboard and an R session to manually *run* a few 
> examples. We were using lists of 100 elements and 5
> workers. First, lets take a look at **splitList**:
> 
> ```r
>> sapply(parallel:::splitList(1:100, 5), length)
> [1] 20 20 20 20 20
> 
>> sapply(parallel:::splitList(1:97, 5), length)
> [1] 20 19 19 19 20
> 
>> sapply(parallel:::splitList(1:97, 20), length)
>  [1] 5 5 5 5 4 5 5 5 5 5 4 5 5 5 5 4 5 5 5 5
> ```
> 
> As we can see in the examples, the work is distributed as equally as possible.
> 
> 
> ## dynamicClusterApply
> 
> **dynamicClusterApply** works this way (simplified):
> 
> 1.  it first gives a chunk to each worker
> 2.  once a worker comes back with the result, it is given the next chunk
> 
> **This is the important part:** As long as there are **more** chunks than 
> workers, there will be load balancing. If
> there are fewer chunks than workers, each worker will get **at most one 
> chunk** and there is **no** load balancing.
> 
> 
> ## parLapplyLB
> 
> This is how **parLapplyLB** splits the input list (with a bit of refactoring, 
> for readability):
> 
> ```r
> parLapplyLB <- function(cl = NULL, X, fun, ...)
> {
>     cl <- defaultCluster(cl)
> 
>     chunks <- splitList(X, length(cl))
> 
>     do.call(c,
>             clusterApplyLB(cl, x = chunks, fun = lapply, fun, ...),
>             quote = TRUE)
> }
> ```
> 
> For our examples, the chunks have these sizes:
> 
> ```r
>> sapply(parallel:::splitList(1:100, 5), length)
> [1] 20 20 20 20 20
> ```
> 
> There we have it: 5 chunks. 5 workers. With this work distribution, there 
> can't possibly be any load balancing, because
> each worker is given a single chunk and then it stops working because there 
> are no more chunks.
> 
> Instead, **parLapplyLB** should look like this (patch is attached):
> 
> ```r
> parLapplyLB <- function(cl = NULL, X, fun, ...)
> {
>     cl <- defaultCluster(cl)
> 
>     chunkSize <- max(length(cl), ceiling(length(X) / length(cl)))
> 
>     chunks <- splitList(X, chunkSize)
> 
>     do.call(c,
>             clusterApplyLB(cl, x = chunks, fun = lapply, fun, ...),
>             quote = TRUE)
> }
> ```
> 
> Examples with a cluster of 5 workers:
> 
> ```r
> # length(cl) < length(X)
>> sapply(parallel:::splitList(1:100, ceiling(100 / 5)), length)
>  [1] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
> 
> # length(cl) >= length(X)
>> sapply(parallel:::splitList(1:4, 4), length)
> [1] 1 1 1 1
> # one worker idles here, but we can't do better than that
> ```
> 
> With this patch, the number of chunks is larger than the number of workers, 
> if possible at all, and then load balancing
> should work.
> 
> Best Regards
> 
> 
> 
> ______________________________________________
> R-devel@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-devel
> 

-- 
Christian Krause

Scientific Computing Administration and Support

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Email: christian.kra...@idiv.de

Office: BioCity Leipzig 5e, Room 3.201.3

Phone: +49 341 97 33144

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig

Deutscher Platz 5e

04103 Leipzig

Germany

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

iDiv is a research centre of the DFG – Deutsche Forschungsgemeinschaft

iDiv ist eine zentrale Einrichtung der Universität Leipzig im Sinne des § 92 
Abs. 1 SächsHSFG und wird zusammen mit der Martin-Luther-Universität 
Halle-Wittenberg und der Friedrich-Schiller-Universität Jena betrieben sowie in 
Kooperation mit dem Helmholtz-Zentrum für Umweltforschung GmbH – UFZ. 
Beteiligte Kooperationspartner sind die folgenden außeruniversitären 
Forschungseinrichtungen: das Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, 
das Max-Planck-Institut für Biogeochemie (MPI BGC), das Max-Planck-Institut für 
chemische Ökologie (MPI CE), das Max-Planck-Institut für evolutionäre 
Anthropologie (MPI EVA), das Leibniz-Institut Deutsche Sammlung von 
Mikroorganismen und Zellkulturen (DSMZ), das Leibniz-Institut für 
Pflanzenbiochemie (IPB), das Leibniz-Institut für Pflanzengenetik und 
Kulturpflanzenforschung (IPK) und das Leibniz-Institut Senckenberg Museum für 
Naturkunde Görlitz (SMNG). USt-IdNr. DE 141510383

Attachment: signature.asc
Description: OpenPGP digital signature

______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel

Reply via email to