-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 On 15-03-23 12:55 PM, Thierry Onkelinx wrote: > Dear Ben, > > Last week I was struggling with incorporating lme4 into a package. > I traced the problem and made a reproducible example ( > https://github.com/ThierryO/testlme4). It looks very simular to > the problem you describe. > > The 'tests' directory contains the reproducible examples. confint() > of a model as returned by a function fails. It even fails when I > try to calculate the confint() inside the same function as the > glmer() call (see the fit_model_ci function). > > Best regards, > > Thierry
Ugh. I can get this to work if I also try searching up the call stack, as follows (within update.merMod). This feels like "code smell" to me though -- i.e., if I have to hack this hard I must be doing something wrong/misunderstanding how the problem *should* be done. if (evaluate) { ff <- environment(formula(object)) pf <- parent.frame() ## save parent frame in case we need it sf <- sys.frames()[[1]] tryCatch(eval(call, env=ff), error=function(e) { tryCatch(eval(call, env=sf), error=function(e) { eval(call, pf) }) }) } else call Here is an adapted even-more-minimal version of your code, which seems to work with the version of update.merMod I just pushed to github, but fails for glm(): ## https://github.com/ThierryO/testlme4/blob/master/R/fit_model_ci.R fit_model_ci <- function(formula, dataset, mfun=glmer){ model <- mfun( formula = formula, data = dataset, family = "poisson" ) ci <- confint(model) return(list(model = model, confint = ci)) } library("lme4") set.seed(101) dd <- data.frame(f=factor(rep(1:10,each=100)), y=rpois(2,1000)) fit_model_ci(y~(1|f),dataset=dd) fit_model_ci(y~(1|f),dataset=dd,mfun=glm) > > > ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / > Research Institute for Nature and Forest team Biometrie & > Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat > 25 1070 Anderlecht Belgium > > To call in the statistician after the experiment is done may be no > more than asking him to perform a post-mortem examination: he may > be able to say what the experiment died of. ~ Sir Ronald Aylmer > Fisher The plural of anecdote is not data. ~ Roger Brinner The > combination of some data and an aching desire for an answer does > not ensure that a reasonable answer can be extracted from a given > body of data. ~ John Tukey > > 2015-03-22 17:45 GMT+01:00 Ben Bolker <bbol...@gmail.com>: > > WARNING: this is long. Sorry I couldn't find a way to compress > it. > > Is there a reasonable way to design an update method so that it's > robust to a variety of reasonable use cases of generating calls or > data inside or outside a function? Is it even possible? Should I > just tell users "don't do that"? > > * `update.default()` uses `eval(call, parent.frame())`; this fails > when the call depends on objects that were defined in a different > environment (e.g., when the data are generated and the model > initially fitted within a function scope) > > * an alternative is to store the original environment in which the > fitting is done in the environment of the formula and use > `eval(call, env=environment(formula(object)))`; this fails if the > user tries to update the model originally fitted outside a > function with data modified within a function ... > > * I think I've got a hack that works below, which first tries in > the environment of the formula and falls back to the parent frame > if that fails, but I wonder if I'm missing something much simpler > .. > > Thoughts? My understanding of environments and frames is still, > after all these years, not what it should be ... > > I've thought of some other workarounds, none entirely > satisfactory: > > * force evaluation of all elements in the original call * printing > components of the call can get ugly (can save the original call > before evaluating) * large objects in the call get duplicated * > don't use `eval(call)` for updates; instead try to store > everything internally * this works OK but has the same drawback of > potentially storing large extra copies * we could try to use the > model frame (which is stored already), but there are issues with > this (the basis of a whole separate rant) because the model frame > stores something in between predictor variables and input > variables. For example > > d <- data.frame(y=1:10,x=runif(10)) > names(model.frame(lm(y~log(x),data=d))) ## "y" "log(x)" > > So if we wanted to do something like update to "y ~ sqrt(x)", it > wouldn't work ... > > ================== update.envformula <- function(object,...) { > extras <- match.call(expand.dots = FALSE)$... call <- > getCall(object) for (i in names(extras)) { existing <- > !is.na(match(names(extras), names(call))) for (a in > names(extras)[existing]) call[[a]] <- extras[[a]] if > (any(!existing)) { call <- c(as.list(call), extras[!existing]) call > <- as.call(call) } } eval(call, env=environment(formula(object))) > ## enclos=parent.frame() doesn't help } > > update.both <- function(object,...) { extras <- > match.call(expand.dots = FALSE)$... call <- getCall(object) for (i > in names(extras)) { existing <- !is.na(match(names(extras), > names(call))) for (a in names(extras)[existing]) call[[a]] <- > extras[[a]] if (any(!existing)) { call <- c(as.list(call), > extras[!existing]) call <- as.call(call) } } pf <- parent.frame() > ## save parent frame in case we need it tryCatch(eval(call, > env=environment(formula(object))), error=function(e) { eval(call, > pf) }) } > > ### TEST CASES > > set.seed(101) d <- data.frame(x=1:10,y=rnorm(10)) m1 <- > lm(y~x,data=d) > > ##' define data within function, return fitted model f1 <- > function() { d2 <- d lm(y~x,data=d2) return(lm(y~x,data=d2)) } ##' > define (and modify) data within function, try to update ##' model > fitted elsewhere f2 <- function(m) { d2 <- d; d2[1] <- d2[1]+0 ## > force copy update.default(m,data=d2) } ##' define (and modify) data > within function, try to update ##' model fitted elsewhere (use > envformula) f3 <- function(m) { d2 <- d; d2[1] <- d2[1]+0 ## force > copy update.envformula(m,data=d2) } > > ##' hack: first try the formula, then the parent frame ##' if that > doesn't work for any reason f4 <- function(m) { d2 <- d; d2[1] <- > d2[1]+0 ## force copy update.both(m,data=d2) } > > ## Case 1: fit within function m2 <- f1() try(update.default(m2)) > ## default: object 'd2' not found m3A <- update.envformula(m2) ## > envformula: works m3B <- update.both(m2) ## works > > ## Case 2: update within function m4A <- f2(m1) ## default: works > try(f3(m1)) ## envformula: object 'd2' not found m4B <- f4(m1) > ## works > >> >> ______________________________________________ >> R-devel@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-devel >> > -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.11 (GNU/Linux) iQEcBAEBAgAGBQJVEfl/AAoJEOCV5YRblxUHWdgH/AqLAhDqKV8aRg6jnX9rO96D nwzqv0ClMIxVr2dzD4eSQTL2caWZnXVkws+lg9N7bc4BaWplcYxLNRBw5M8zHOPJ E7JlhG3EecvmeAEt9OY0/q6I0D6vdoEjcH7wzzuyLLIqllu9OskxURi/azMs0XRo tiN+oG5aOKsMYsEGjtiWySRDzhJh2TM40A1HHjAViqpxZcqilAZ6RiNEFe1t1JY0 IvDI8yesSuHnKtgAiqk9ivGw4BCCGoBSIHB3GrJIi11j06iYKw0ugVHIlKYO8cqf AYTvEX2sSxsJgKWYTiG/1dr/kiFTntTDji03zRLVUdPKIZATJMczv+KB+0bpoVY= =Z34K -----END PGP SIGNATURE----- ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel