CRAN size has grown almost exponentially at least since 2001. R
history was discussed by John Fox (2009) Aspects of the Social
Organization and Trajectory of the R Project, R Journal
(http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Fox.pdf).
Below please find his data plus 5 additional points I added and R script
I used to fit a models.
I won't defend the models fit in the script below. However,
unless CRAN management changes dramatically in the next 5 years, it
seems likely that CRAN will have 10,000 packages some time in 2018.
By the way, if you don't already use the sos package routinely, I
encourage you to consider it. For me, it's by far the fastest
literature search for anything statistical. In a very few minutes, I
get an Excel file with a summary by package of the matches to almost any
combination of search terms. (Shameless plug by the lead author of the
package ;-)
Best Wishes,
Spencer Graves
date packages
2001-06-21 110
2001-12-17 129
2002-06-12 162
2003-05-27 219
2003-11-16 273
2004-06-05 357
2004-10-12 406
2005-06-18 548
2005-12-16 647
2006-05-31 739
2006-12-12 911
2007-04-12 1000
2007-11-16 1300
2008-03-18 1427
2008-10-18 1614
2009-09-17 1952
2012-06-12 3786
2012-11-01 4082
2012-12-14 4210
2013-10-28 4960
2013-11-08 5000
library(gdata)
(CRANfile <- dir(pattern='s\\.xls$'))
#readLines(CRANfile)
str(CRANhist. <- read.xls(CRANfile, stringsAsFactors=FALSE,
header=TRUE))
tail(CRANhist., 11)
CRANhist <- CRANhist.[1:20, 1:2]
(dt. <- as.Date(CRANhist$date))
CRANhist$date <- dt.
(day1 <- min(CRANhist$date)) # 2001-06-21
str(ddate <- CRANhist$date-day1)
# difftime in days
CRANhist$CRANdays <- as.numeric(ddate)
(growth <- lm(log(packages)~CRANdays, CRANhist))
CRANhist$pred <- exp(predict(growth))
plot(packages~date, CRANhist, log='y')
lines(pred~date, CRANhist, pch='.')
fitLogLogis <- nls(log(packages) ~ a+b*CRANdays + log(1+exp(d+b*CRANdays)),
CRANhist, start=c(a=4.9, b=0.0009, d=0))
# Error ... singular gradient
library(drc)
CRANlogLogis <- drm(packages~CRANdays, data=CRANhist, fct=LL.3())
plot(CRANlogLogis, log='y') # very poor through 2005
CRANlogLogis. <- drm(log(packages)~CRANdays, data=CRANhist, fct=LL.3())
plot(CRANlogLogis., log='y') # terrible: far worse than CRANlogLogis
CRANlogLogis4 <- drm(packages~CRANdays, data=CRANhist, fct=LL.4())
plot(CRANlogLogis4, log='y') # poor for 2001 but great otherwise
CRANlogLogis4. <- drm(log(packages)~CRANdays, data=CRANhist, fct=LL.4())
plot(CRANlogLogis4., log='y') # best I've found so far.
abline(h=c(4200, 8400))
sapply(CRANhist, range)
pred.dTimes <- seq(0, 6000, 100)
CRANpred <- predict(CRANlogLogis4., data.frame(CRANdays=pred.dTimes))
data.frame(Date=as.Date(day1+pred.dTimes), nPkgs=exp(CRANpred))
plot(day1+pred.dTimes, exp(CRANpred), type='l', log='y')
points(packages~date, CRANhist)
pred.dTimes <- seq(0, 10000, 100)
CRANpred <- predict(CRANlogLogis4., data.frame(CRANdays=pred.dTimes))
plot(day1+pred.dTimes, exp(CRANpred), type='l', log='y')
points(packages~date, CRANhist)
abline(h=c(4200, 8400))
abline(v=as.Date('2012-12-14'))
abline(v=as.Date('2017-09-30'))
#########################
abline(h=20000)
abline(h=70000)
pred.dTimes <- seq(0, 1000000, 10000)
CRANpred <- predict(CRANlogLogis4., data.frame(CRANdays=pred.dTimes))
plot(day1+pred.dTimes, exp(CRANpred), type='l', log='y')
points(packages~date, CRANhist)
On 11/8/2013 4:43 PM, William Dunlap wrote:
"Currently, the CRAN package repository features 5001 available packages."
Going from 4000 to 5000 packages took 14.5 months - that's one new package
every 10.5 hours. Behind every package there are real people. These
user-contributed packages are maintained by ~2900 people [2] - that's 350
new maintainers and many more contributors. More people to thank than ever
before - don't forget about them, e.g. cite properly when publishing.
Congratulations!
I have often wondered about the natural history of R packages: how often they
are created and shared, how long they are used, how many people use them,
how long they are maintained, etc. The usage numbers are hard to get, but the
"Last modified" dates in the CRAN archives do give some information on how
often new packages are shared and how long they are maintained.
Here are some summaries of derived from those dates. The code to get the
data and calculate (and plot) the summaries follows.
newPkgsByYear
1997-01-01 1998-01-01 1999-01-01 2000-01-01
2 12 56 41
2001-01-01 2002-01-01 2003-01-01 2004-01-01
65 66 101 144
2005-01-01 2006-01-01 2007-01-01 2008-01-01
209 280 329 374
2009-01-01 2010-01-01 2011-01-01 2012-01-01
502 546 702 809
2013-01-01
439
table(nUpdatesSinceSep2011) # number of recent updates (not including original
submission)
nUpdatesSinceSep2011
0 1 2 3 4 5 6 7 8 9
2079 963 528 332 238 166 75 79 50 43
10 11 12 13 14 15 16 17 18 19
23 22 13 14 8 9 12 5 4 1
20 21 22 24 26 27 31 32 34
1 3 1 2 1 2 1 1 1
The code I used is:
library(XML)
getArchiveList <- function(site =
"http://cran.r-project.org/src/contrib/Archive/") {
retval <- readHTMLTable(site, stringsAsFactors=FALSE)[[1]]
retval <- retval[!is.na(retval$Name) & grepl("/$", retval$Name), ]
retval$Name <- gsub("/$", "", retval$Name)
retval$"Last modified" <- as.Date(retval$"Last modified",
format="%d-%b-%Y")
retval
}
getArchiveEntry <- function(Name, site =
"http://cran.r-project.org/src/contrib/Archive/") {
retval <- readHTMLTable(paste0(site, Name), stringsAsFactors=FALSE)[[1]]
retval <- retval[!is.na(retval$Name) & retval$Name != "Parent Directory", ]
retval$"Last modified" <- as.Date(retval$"Last modified",
format="%d-%b-%Y")
retval
}
al <- getArchiveList()
# The next may bog down the CRAN archive server - do not do it often
# ae <- lapply(structure(al$Name, names=al$Name),
# function(Name)tryCatch(getArchiveEntry(Name),
# error=function(e)data.frame(Name=character(),
"Last Modified" = as.Date(character()))))
initialSubmissionDate <- as.Date(vapply(ae, function(e)min(e[["Last modified"]]), 0),
origin=as.Date("1970-01-01"))
lastSubmissionDate <- as.Date(vapply(ae, function(e)max(e[["Last modified"]]), 0),
origin=as.Date("1970-01-01"))
mths <- seq(as.Date("1997-10-01"), as.Date("2014-01-01"), by="months")
yrs <- seq(as.Date("1997-01-01"), as.Date("2014-01-01"), by="years")
par(ask=TRUE)
newPkgsByMonth <- table(cut(initialSubmissionDate, mths))
newPkgsByYear <- table(cut(initialSubmissionDate, yrs))
plot(mths[-1], newPkgsByMonth, log="y", ylab="# New Pkgs", main="New packages by
month") # number of additions each month
yearsOfMaintainanceActivity <- as.numeric(lastSubmissionDate - initialSubmissionDate,
units="days")/365.25
hist(yearsOfMaintainanceActivity, xlab="Years", main="Maintainance Duration")
newPkgsByYear
table(floor(yearsOfMaintainanceActivity))
nUpdatesSinceSep2011 <- vapply(ae, function(e){
Lm <- e[["Last modified"]]
sum(Lm >= as.Date("2011-09-01") & Lm != min(Lm))}, 0L)
table(nUpdatesSinceSep2011) # number of recent updates (not including original
submission)
Bill Dunlap
Spotfire, TIBCO Software
wdunlap tibco.com
-----Original Message-----
From: r-devel-boun...@r-project.org [mailto:r-devel-boun...@r-project.org] On
Behalf
Of Henrik Bengtsson
Sent: Friday, November 08, 2013 1:59 PM
To: R Development Mailing List
Subject: [Rd] Milestone: 5000 packages on CRAN
Here we go again...
Today (2011-11-08) on The Comprehensive R Archive Network (CRAN) [1]:
"Currently, the CRAN package repository features 5001 available packages."
Going from 4000 to 5000 packages took 14.5 months - that's one new package
every 10.5 hours. Behind every package there are real people. These
user-contributed packages are maintained by ~2900 people [2] - that's 350
new maintainers and many more contributors. More people to thank than ever
before - don't forget about them, e.g. cite properly when publishing.
Milestones:
2013-11-08: 5000 packages [this post]
2012-08-23: 4000 packages [7]
2011-05-12: 3000 packages [6]
2009-10-04: 2000 packages [5]
2007-04-12: 1000 packages [4]
2004-10-01: 500 packages [3,4]
2003-04-01: 250 packages [3,4]
[1] http://cran.r-project.org/web/packages/
[2] http://cran.r-project.org/web/checks/check_summary_by_maintainer.html
[3] Private data.
[4] https://stat.ethz.ch/pipermail/r-devel/2007-April/045359.html
[5] https://stat.ethz.ch/pipermail/r-devel/2009-October/055049.html
[6] https://stat.ethz.ch/pipermail/r-devel/2011-May/061002.html
[7] https://stat.ethz.ch/pipermail/r-devel/2012-August/064675.html
/Henrik
PS. These data are for CRAN only. There are more packages elsewhere, e.g.
R-Forge, Bioconductor, Github etc.
[[alternative HTML version deleted]]
______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel
______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel
--
Spencer Graves, PE, PhD
President and Chief Technology Officer
Structure Inspection and Monitoring, Inc.
751 Emerson Ct.
San José, CA 95126
ph: 408-655-4567
web: www.structuremonitoring.com
______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel