Hi Val,

[off list... I don't want to compromise your chances to start a
constructive discussion ;-)]

Thanks for reporting this. Just wanted to mention that the reason I
think the situation is worst when you use the paste() generic defined
in BiocGenerics than when you make paste() a generic with
setGeneric("paste") is because of the signature of the generic.
With the latter dispatch is on the 'sep' and 'collapse' args only
(which is surprising but that's another story), while
with the former it's on ...:

  > setGeneric("paste")
  [1] "paste"

  > paste
  standardGeneric for "paste" defined from package "base"

  function (..., sep = " ", collapse = NULL)
  standardGeneric("paste")
  <environment: 0x157a028>
  Methods may be defined for arguments: sep, collapse
  Use  showMethods("paste")  for currently available ones.

  ## Note that showMethods() is broken (it contradicts the above
  ## that indicates dispatch is on 'sep' and 'collapse').
  > showMethods("paste")
  Function: paste (package base)
  ...="ANY"

  > microbenchmark(fun0(lst), fun1(lst), times=10)
  Unit: milliseconds
        expr       min        lq    median        uq       max neval
   fun0(lst) 27.374228 27.508580 28.144858 28.895889 33.528221    10
   fun1(lst)  5.474173  5.739289  5.803471  6.050482  6.825982    10

  > removeGeneric("paste")
  [1] TRUE

> setGeneric("paste", signature="...") # this how it's defined in BiocGenerics
  Creating a new generic function for ‘paste’ in the global environment
  [1] "paste"

  > microbenchmark(fun0(lst), fun1(lst), times=10)
  Unit: milliseconds
        expr        min         lq     median         uq        max neval
   fun0(lst) 149.828201 153.192866 155.845508 157.916067 176.313906    10
   fun1(lst)   4.924387   5.088094   5.114532   5.200432   5.332386    10

Dispatch on ... seems to have a ridiculously high cost!

H.

On 07/01/2013 10:04 PM, Valerie Obenchain wrote:
Hi,

S4 method dispatch can be very slow. Would it be reasonable to cache the
most
recent dispatch, anticipating the next invocation will be on the same
type? This
would be very helpful in loops.

   fun0 <- function(x)
       sapply(x, paste, collapse="+")
   fun1 <- function(x) {
       paste <- selectMethod(paste, class(x[[1]]))
       sapply(x, paste, collapse="+")
   }
   lst <- split(rep(LETTERS, 100), rep(1:1300, 2))

   library(microbenchmark)
   microbenchmark(fun0(lst), times=10)
   ## Unit: milliseconds
   ##       expr      min       lq   median      uq      max neval
   ##  fun0(lst) 4.153287 4.180659 4.513539 5.19261 5.280481    10

   setGeneric("paste")
   microbenchmark(fun0(lst), fun1(lst), times=10)
   ## >     microbenchmark(fun0(lst), fun1(lst), times=10)
   ## Unit: milliseconds
   ##       expr       min       lq    median        uq       max neval
   ##  fun0(lst) 21.093180 21.27616 21.453174 21.833686 24.758791    10
   ##  fun1(lst)  4.517808  4.53067  4.582641  4.682235  5.121856    10

Dispatch seems to be especially slow when packages are involved, e.g.,
with the Bioconductor IRanges package
(http://bioconductor.org/packages/release/bioc/html/IRanges.html)

   removeGeneric("paste")
   library(IRanges)
   showMethods(paste)
   ## Function: paste (package BiocGenerics)
   ## ...="ANY"
   ## ...="Rle"
   selectMethod(paste, "ANY")
   ## Method Definition (Class "derivedDefaultMethod"):
   ##
   ## function (..., sep = " ", collapse = NULL)
   ## .Internal(paste(list(...), sep, collapse))
   ## <environment: namespace:base>
   ##
   ## Signatures:
   ##         ...
   ## target  "ANY"
   ## defined "ANY"

   microbenchmark(fun0(lst), fun1(lst), times=10)
   ## Unit: milliseconds
   ##       expr        min         lq     median         uq        max
neval
   ##  fun0(lst) 233.539585 234.592491 236.311209 237.268506 243.181123
    10
   ##  fun1(lst)   4.564914   4.592996   4.642898   4.729009   5.492706
    10

   sessionInfo()
   ## R version 3.0.0 Patched (2013-04-04 r62492)
   ## Platform: x86_64-unknown-linux-gnu (64-bit)
   ##
   ## locale:
   ##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C
   ##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8
   ##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
   ##  [7] LC_PAPER=C                 LC_NAME=C
   ##  [9] LC_ADDRESS=C               LC_TELEPHONE=C
   ## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
   ##
   ## attached base packages:
   ## [1] parallel  stats     graphics  grDevices utils     datasets
methods
   ## [8] base
   ##
   ## other attached packages:
   ## [1] IRanges_1.19.15      BiocGenerics_0.7.2   microbenchmark_1.3-0
   ##
   ## loaded via a namespace (and not attached):
   ## [1] stats4_3.0.0


Thanks,
Valerie

______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel

--
Hervé Pagès

Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N, M1-B514
P.O. Box 19024
Seattle, WA 98109-1024

E-mail: hpa...@fhcrc.org
Phone:  (206) 667-5791
Fax:    (206) 667-1319

______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel

Reply via email to