Should the F statistic be the same when using add1() on models created by lm and glm(family=gaussian)? They are in the single-degree-of-freedom case but not in the multiple-degree-of-freedom case. MASS:addterm shows the same discrepancy. It looks like the deviance (==residual sum of squares) gets divided by the number of degrees of freedom for the term twice in add1.glm. Using anova() on the output of lm and glm(family=gaussian) gives the save F statistic as add1.lm gives.
> # factor(carb) consumes 5 degrees of freedom, am 1, compare their F values. > fit <- lm(mpg ~ hp, data=mtcars) ; add1(fit, ~ hp + factor(carb) + am, > test="F") Single term additions Model: mpg ~ hp Df Sum of Sq RSS AIC F value Pr(>F) <none> 447.67 88.427 factor(carb) 5 103.54 344.13 90.009 1.5044 0.2241 am 1 202.24 245.44 71.194 23.8952 3.46e-05 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > fit <- glm(mpg ~ hp, data=mtcars) ; add1(fit, ~ hp + factor(carb) + am, > test="F") Single term additions Model: mpg ~ hp Df Deviance AIC F value Pr(>F) <none> 447.67 181.24 factor(carb) 5 344.13 182.82 0.3009 0.9077 am 1 245.44 164.01 23.8952 3.46e-05 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Bill Dunlap Spotfire, TIBCO Software wdunlap tibco.com ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel