I've started to use the parallel package and it works very well speeding things up. Thank you for making this easy to do.
Should I have expected that parCapply would return a vector when parApply returns a matrix? library(parallel) x <- matrix(rnorm(8), nc = 2) apply(x, 2, function(y) y) [,1] [,2] [1,] -0.9649685 0.91339851 [2,] -1.4313140 0.13457671 [3,] 1.0499248 1.58967879 [4,] -1.8974411 0.03639876 cl <- makeCluster(getOption("cl.cores", detectCores())) parApply(cl, x, 2, function(y) y) [,1] [,2] [1,] -0.9649685 0.91339851 [2,] -1.4313140 0.13457671 [3,] 1.0499248 1.58967879 [4,] -1.8974411 0.03639876 parCapply(cl, x, function(y) y) [1] -0.96496852 -1.43131396 1.04992479 -1.89744113 0.91339851 0.13457671 [7] 1.58967879 0.03639876 stopCluster(cl)
sessionInfo()
R version 2.15.0 beta (2012-03-15 r58760) Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit) locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] parallel stats graphics grDevices utils datasets methods [8] base Thank you. -- Ken Knoblauch Inserm U846 Stem-cell and Brain Research Institute Department of Integrative Neurosciences 18 avenue du Doyen Lépine 69500 Bron France tel: +33 (0)4 72 91 34 77 fax: +33 (0)4 72 91 34 61 portable: +33 (0)6 84 10 64 10 http://www.sbri.fr/members/kenneth-knoblauch.html ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel