On 17 Aug 2011, at 7:08PM, <cbe...@tajo.ucsd.edu> <cbe...@tajo.ucsd.edu> wrote:
> John C Nash <nas...@uottawa.ca> writes: > >> This message is about a curious difference in timing between two ways of >> computing the >> same function. One uses expm, so is expected to be a bit slower, but "a bit" >> turned out to >> be a factor of >1000. > > Looks like A*t in expm(A*t) is a "matrix". > > 'getMethod("expm","matrix")' coerces it arg to a "Matrix", then calls > expm(), whose method coerces its arg to a "dMatrix" and calls expm(), > whose method coerces its arg to a 'dgeMatrix' and calls expm(), whose > method finally calls '.Call(dgeMatrix_exp, x)' > > Whew! > > The time difference between 'expm( diag(10)+1 )' and 'expm( as( diag(10)+1, > "dgeMatrix" ))' is a factor of 10 on my box. > You are right! I was testing running nlogL below 100 times. expm() is then called 2500 times. The total running time on my machine was 13 seconds. If you replace in nlogL the part: -- A<-rbind( c(-k[1], k[2]), c( k[1], -(k[2]+k[3])) ) x0<-c(0,100) sol<-function(t)100-sum(expm(A*t)%*%x0) -- with: -- A<-rbind( c(-k[1], k[2]), c( k[1], -(k[2]+k[3])) ) A<-as(A,"dgeMatrix") # <--- this is the difference sol<-function(t)100-sum(expm(A*t)%*%x0) -- this time drops to 1.5 seconds (!). At that point, expm() takes up much less time than, for example, calculating A*t in sol(), and the sum() - I think because conversions have to be done. Thus, if m is a 2x2 dgeMatrix, then > system.time({for(i in 1:2500) m*3.2}) user system elapsed 0.425 0.004 0.579 (i.e. 1/3 of the total time for nlogL() above) whereas if mm=as.matrix(m), then > system.time({for(i in 1:2500) mm*3.2}) user system elapsed 0.004 0.000 0.005 (!!) and, similarly: -- > system.time({for(i in 1:2500) sum(m)}) user system elapsed 0.399 0.002 0.494 > system.time({for(i in 1:2500) sum(mm)}) user system elapsed 0.002 0.000 0.028 -- whereas > system.time({for(i in 1:2500) expm(m)}) user system elapsed 0.106 0.001 0.118 to sum it up, of 13 seconds, 11.5 were spent on conversions to dgeMatrix 0.5 are spent on multiplying a dgeMatrix by a double 0.5 are spent on summing a dgeMatrix and 0.1 are actually spent in expm. Michael P.S. You could have used Rprof() to see these times, only that interpreting summaryRprof() is a bit hard. (Is there something that does summaryRprof(), but also shows the call graph?) > Dunno 'bout the other factor of 100. > > Chuck > > > > >> The problem arose in an activity to develop guidelines for nonlinear >> modeling in ecology (at NCEAS, Santa Barbara, with worldwide participants), >> and we will be >> trying to include suggestions of how to prepare problems like this for >> efficient and >> effective solution. The code for nlogL was the "original" from the worker >> who supplied the >> problem. >> >> Best, >> >> John Nash >> >> -------------------------------------------------------------------------------------- >> >> cat("mineral-timing.R == benchmark MIN functions in R\n") >> # J C Nash July 31, 2011 >> >> require("microbenchmark") >> require("numDeriv") >> library(Matrix) >> library(optimx) >> # dat<-read.table('min.dat', skip=3, header=FALSE) >> # t<-dat[,1] >> t <- c(0.77, 1.69, 2.69, 3.67, 4.69, 5.71, 7.94, 9.67, 11.77, 17.77, >> 23.77, 32.77, 40.73, 47.75, 54.90, 62.81, 72.88, 98.77, 125.92, 160.19, >> 191.15, 223.78, 287.70, 340.01, 340.95, 342.01) >> >> # y<-dat[,2] # ?? tidy up >> y<- c(1.396, 3.784, 5.948, 7.717, 9.077, 10.100, 11.263, 11.856, 12.251, >> 12.699, >> 12.869, 13.048, 13.222, 13.347, 13.507, 13.628, 13.804, 14.087, 14.185, >> 14.351, >> 14.458, 14.756, 15.262, 15.703, 15.703, 15.703) >> >> >> ones<-rep(1,length(t)) >> theta<-c(-2,-2,-2,-2) >> >> >> nlogL<-function(theta){ >> k<-exp(theta[1:3]) >> sigma<-exp(theta[4]) >> A<-rbind( >> c(-k[1], k[2]), >> c( k[1], -(k[2]+k[3])) >> ) >> x0<-c(0,100) >> sol<-function(t)100-sum(expm(A*t)%*%x0) >> pred<-sapply(dat[,1],sol) >> -sum(dnorm(dat[,2],mean=pred,sd=sigma, log=TRUE)) >> } >> >> getpred<-function(theta, t){ >> k<-exp(theta[1:3]) >> sigma<-exp(theta[4]) >> A<-rbind( >> c(-k[1], k[2]), >> c( k[1], -(k[2]+k[3])) >> ) >> x0<-c(0,100) >> sol<-function(tt)100-sum(expm(A*tt)%*%x0) >> pred<-sapply(t,sol) >> } >> >> Mpred <- function(theta) { >> # WARNING: assumes t global >> kvec<-exp(theta[1:3]) >> k1<-kvec[1] >> k2<-kvec[2] >> k3<-kvec[3] >> # MIN problem terbuthylazene disappearance >> z<-k1+k2+k3 >> y<-z*z-4*k1*k3 >> l1<-0.5*(-z+sqrt(y)) >> l2<-0.5*(-z-sqrt(y)) >> val<-100*(1-((k1+k2+l2)*exp(l2*t)-(k1+k2+l1)*exp(l1*t))/(l2-l1)) >> } # val should be a vector if t is a vector >> >> negll <- function(theta){ >> # non expm version JN 110731 >> pred<-Mpred(theta) >> sigma<-exp(theta[4]) >> -sum(dnorm(dat[,2],mean=pred,sd=sigma, log=TRUE)) >> } >> >> theta<-rep(-2,4) >> fand<-nlogL(theta) >> fsim<-negll(theta) >> cat("Check fn vals: expm =",fand," simple=",fsim," diff=",fand-fsim,"\n") >> >> cat("time the function in expm form\n") >> tnlogL<-microbenchmark(nlogL(theta), times=100L) >> tnlogL >> >> cat("time the function in simpler form\n") >> tnegll<-microbenchmark(negll(theta), times=100L) >> tnegll >> >> ftimes<-data.frame(texpm=tnlogL$time, tsimp=tnegll$time) >> # ftimes >> >> >> boxplot(log(ftimes)) >> title("Log times in nanoseconds for matrix exponential and simple MIN fn") >> > > -- > Charles C. Berry cbe...@tajo.ucsd.edu > > ______________________________________________ > R-devel@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel > > > ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel