I've attached an O(N log N) implementation of Kendall's Tau, which I hope will eventually replace the O(N^2) version currently implemented in R. For N = 30,000 it's several hundred times faster than the old version. The core algorithm comes with a lot of tests, which are included in the kendall.c file. However, I've not yet integrated this code into the rest of R because, honestly, the code in cor.c is inscrutable and intermingles computing Kendall's Tau with dealing with missing values and computing other kinds of correlation. I'd like one of the core devs' help with the integration. The details of the algorithm and how to use it are explained in the comments inside kendall.c.

Please let me know what else I can do to help get this improvement folded into R.

--David Simcha
/* This file contains code to calculate Kendall's Tau in O(N log N) time in
 * a manner similar to the following reference:
 *
 * A Computer Method for Calculating Kendall's Tau with Ungrouped Data
 * William R. Knight Journal of the American Statistical Association, Vol. 61,
 * No. 314, Part 1 (Jun., 1966), pp. 436-439
 *
 * Copyright 2010 David Simcha
 *
 * License:
 * Boost Software License - Version 1.0 - August 17th, 2003
 *
 * Permission is hereby granted, free of charge, to any person or organization
 * obtaining a copy of the software and accompanying documentation covered by
 * this license (the "Software") to use, reproduce, display, distribute,
 * execute, and transmit the Software, and to prepare derivative works of the
 * Software, and to permit third-parties to whom the Software is furnished to
 * do so, all subject to the following:
 *
 * The copyright notices in the Software and this entire statement, including
 * the above license grant, this restriction and the following disclaimer,
 * must be included in all copies of the Software, in whole or in part, and
 * all derivative works of the Software, unless such copies or derivative
 * works are solely in the form of machine-executable object code generated by
 * a source language processor.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 * FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 */

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>


uint64_t insertionSort(double*, size_t);

#define kendallTest
#ifdef kendallTest

#include <stdio.h>
#include <assert.h>
#include <time.h>



/* Kludge:  In testing mode, just forward R_rsort to insertionSort to make this
 * module testable without having to include (and compile) a bunch of other
 * stuff.
 */
void R_rsort(double* arr, int len) {
    insertionSort(arr, len);
}
#else

#include <R_ext/Utils.h>  /* For R_rsort. */

#endif

/* Sorts in place, returns the bubble sort distance between the input array
 * and the sorted array.
 */
uint64_t insertionSort(double* arr, size_t len) {
    size_t maxJ, i;
    uint64_t swapCount = 0;

    if(len < 2) {
        return 0;
    }

    maxJ = len - 1;
    for(i = len - 2; i < len; --i) {
        size_t j = i;
        double val = arr[i];

        for(; j < maxJ && arr[j + 1] < val; ++j) {
            arr[j] = arr[j + 1];
        }

        arr[j] = val;
        swapCount += (j - i);
    }

    return swapCount;
}

static uint64_t merge(double* from, double* to, size_t middle, size_t len) {
    size_t bufIndex, leftLen, rightLen;
    uint64_t swaps;
    double* left;
    double* right;

    bufIndex = 0;
    swaps = 0;

    left = from;
    right = from + middle;
    rightLen = len - middle;
    leftLen = middle;

    while(leftLen && rightLen) {
        if(right[0] < left[0]) {
            to[bufIndex] = right[0];
            swaps += leftLen;
            rightLen--;
            right++;
        } else {
            to[bufIndex] = left[0];
            leftLen--;
            left++;
        }
        bufIndex++;
    }

    if(leftLen) {
        memcpy(to + bufIndex, left, leftLen * sizeof(double));
    } else if(rightLen) {
        memcpy(to + bufIndex, right, rightLen * sizeof(double));
    }

    return swaps;
}

/* Sorts in place, returns the bubble sort distance between the input array
 * and the sorted array.
 */
uint64_t mergeSort(double* x, double* buf, size_t len) {
    uint64_t swaps;
    size_t half;

    if(len < 10) {
        return insertionSort(x, len);
    }

    swaps = 0;

    if(len < 2) {
        return 0;
    }

    half = len / 2;
    swaps += mergeSort(x, buf, half);
    swaps += mergeSort(x + half, buf + half, len - half);
    swaps += merge(x, buf, half, len);

    memcpy(x, buf, len * sizeof(double));
    return swaps;
}

static uint64_t getMs(double* data, size_t len) {  /* Assumes data is sorted.*/
    uint64_t Ms = 0, tieCount = 0;
    size_t i;

    for(i = 1; i < len; i++) {
        if(data[i] == data[i-1]) {
            tieCount++;
        } else if(tieCount) {
            Ms += (tieCount * (tieCount + 1)) / 2;
            tieCount++;
            tieCount = 0;
        }
    }
    if(tieCount) {
        Ms += (tieCount * (tieCount + 1)) / 2;
        tieCount++;
    }
    return Ms;
}

/* This function calculates the Kendall covariance (if cor == 0) or
 * correlation (if cor != 0), but assumes arr1 has already been sorted and
 * arr2 has already been reordered in lockstep.  This can be done within R
 * before calling this function by doing something like:
 *
 * perm <- order(arr1)
 * arr1 <- arr1[perm]
 * arr2 <- arr2[perm]
 */
double kendallNlogN(double* arr1, double* arr2, size_t len, int cor) {
    uint64_t m1 = 0, m2 = 0, tieCount, swapCount, nPair;
    int64_t s;
    size_t i;

    nPair = (uint64_t) len * ((uint64_t) len - 1) / 2;
    s = nPair;

    tieCount = 0;
    for(i = 1; i < len; i++) {
        if(arr1[i - 1] == arr1[i]) {
            tieCount++;
        } else if(tieCount > 0) {
            R_rsort(arr2 + i - tieCount - 1, tieCount + 1);
            m1 += tieCount * (tieCount + 1) / 2;
            s += getMs(arr2 + i - tieCount - 1, tieCount + 1);
            tieCount++;
            tieCount = 0;
        }
    }
    if(tieCount > 0) {
        R_rsort(arr2 + i - tieCount - 1, tieCount + 1);
        m1 += tieCount * (tieCount + 1) / 2;
        s += getMs(arr2 + i - tieCount - 1, tieCount + 1);
        tieCount++;
    }

    swapCount = mergeSort(arr2, arr1, len);

    m2 = getMs(arr2, len);
    s -= (m1 + m2) + 2 * swapCount;

    if(cor) {
        double denominator1 = nPair - m1;
        double denominator2 = nPair - m2;
        double cor = s / sqrt(denominator1) / sqrt(denominator2);
        return cor;
    } else {
        /* Return covariance. */
        return 2 * s;
    }
}

/* This function uses a simple O(N^2) implementation.  It probably has a smaller
 * constant and therefore is useful in the small N case, and is also useful
 * for testing the relatively complex O(N log N) implementation.
 */
double kendallSmallN(double* arr1, double* arr2, size_t len, int cor) {
    /* Not using 64-bit ints here because this function is meant only for
       small N and for testing.
    */
    int m1 = 0, m2 = 0, s = 0, nPair;
    size_t i, j;
    double denominator1, denominator2;

    for(i = 0; i < len; i++) {
        for(j = i + 1; j < len; j++) {
            if(arr2[i] > arr2[j]) {
                if (arr1[i] > arr1[j]) {
                    s++;
                } else if(arr1[i] < arr1[j]) {
                    s--;
                } else {
                    m1++;
                }
            } else if(arr2[i] < arr2[j]) {
                if (arr1[i] > arr1[j]) {
                    s--;
                } else if(arr1[i] < arr1[j]) {
                    s++;
                } else {
                    m1++;
                }
            } else {
                m2++;

                if(arr1[i] == arr1[j]) {
                    m1++;
                }
            }
        }
    }

    nPair = len * (len - 1) / 2;
    if(cor) {
        denominator1 = nPair - m1;
        denominator2 = nPair - m2;
        return s / sqrt(denominator1) / sqrt(denominator2);
    } else {
        /* Return covariance. */
        return 2 * s;
    }
}

#ifdef kendallTest

int main() {
    double a[100], b[100];
    double smallNCor, smallNCov, largeNCor, largeNCov;
    int i;

    /* Test the small N version against a few values obtained from the old
     * version in R.  Only exercising the small N version because the large
     * N version requires the first array to be sorted and the second to be
     * reordered in lockstep before it's called.*/
    {
        double a1[] = {1,2,3,5,4};
        double a2[] = {1,2,3,3,5};
        assert(kendallSmallN(a1, a2, 5, 1) - 0.7378648 < 0.00001);
        assert(kendallSmallN(a1, a2, 5, 0) == 14);

        double b1[] = {8,6,7,5,3,0,9};
        double b2[] = {3,1,4,1,5,9,2};
        assert(kendallSmallN(b1, b2, 7, 1) + 0.39036 < 0.00001);
        assert(kendallSmallN(b1, b2, 7, 0) == -16);

        double c1[] = {1,1,1,2,3,3,4,4};
        double c2[] = {1,2,1,3,3,5,5,5};
        assert(kendallSmallN(c1, c2, 8, 1) - 0.8695652 < 0.00001);
        assert(kendallSmallN(c1, c2, 8, 0) == 40);
    }

    /* Now that we're confident that the simple, small N version works,
     * extensively test it against the much more complex and bug-prone
     * O(N log N) version.
     */
    for(i = 0; i < 10000; i++) {
        int j, len;
        for(j = 0; j < 100; j++) {
            a[j] = rand() % 30;
            b[j] = rand() % 30;
        }

        len = rand() % 50 + 50;

        /* The large N version assumes that the first array is sorted.  This
         * will usually be made true in R before passing the arrays to the
         * C functions.
         */
        insertionSort(a, len);

        if(i & 1) {
            /* Test correlation on odd iterations, covariance on even ones.
             * Can't test both on every iteration because the large N
             * impl destroys the contents of the arrays passed in.*/
            smallNCor = kendallSmallN(a, b, len, 1);
            largeNCor = kendallNlogN(a, b, len, 1);
            assert(largeNCor == smallNCor);
        } else {
            smallNCov = kendallSmallN(a, b, len, 0);
            largeNCov = kendallNlogN(a, b, len, 0);
            assert(largeNCov == smallNCov);
        }
    }

    printf("Passed all tests.\n");

    /* Speed test.  Compare the O(N^2) version, which is very similar to
     * R's current impl, to my O(N log N) version.
     */
    {
        const int N = 30000;
        double *foo, *bar, *buf;
        size_t i;
        double startTime, stopTime;

        foo = (double*) malloc(N * sizeof(double));
        bar = (double*) malloc(N * sizeof(double));
        for(i = 0; i < N; i++) {
            foo[i] = rand();
            bar[i] = rand();
        }

        startTime = clock();
        kendallSmallN(foo, bar, N, 1);
        stopTime = clock();
        printf("O(N^2) version:  %f milliseconds\n", stopTime - startTime);

        startTime = clock();

        /* Only sorting first array.  Normally the second one would be
         * reordered in lockstep.
         */
        buf = (double*) malloc(N * sizeof(double));
        mergeSort(foo, buf, N);
        kendallNlogN(foo, bar, N, 1);
        stopTime = clock();
        printf("O(N log N) version:  %f milliseconds\n", stopTime - startTime);
    }

    return 0;
}

#endif
______________________________________________
R-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-devel

Reply via email to