> We suggest that you take up your own suggestion, research this area and > offer the R project the results of your research for consideration as your > contribution.
I implemented Walker's alias method and re-compiled R. Here is what I did: 1. replace function ProcSampleReplace in R-2.1.0/src/main/random.c with the following one static void ProbSampleReplace(int n, double *p, int *perm, int nans, int *ans) { /* allocate memory for a, p and HL */ double * q = Calloc(n, double); int * a = Calloc(n, int); int * HL = Calloc(n, int); int * H = HL; int * L = HL+n-1; int i, j, k; double rU; /* U[0,1)*n */ /* set up alias table */ /* initialize q with n*p0,...n*p_n-1 */ for(i=0; i<n; ++i) q[i] = p[i]*n; /* initialize a with indices */ for(i=0; i<n; ++i) a[i] = i; /* set up H and L */ for(i=0; i<n; ++i) { if( q[i] >= 1.) *H++ = i; else *L-- = i; } while( H != HL && L != HL+n-1) { j = *(L+1); k = *(H-1); a[j] = k; q[k] += q[j] - 1; L++; /* remove j from L */ if( q[k] < 1. ) { *L-- = k; /* add k to L */ --H; /* remove k */ } } /* generate sample */ for (i = 0; i < nans; ++i) { rU = unif_rand() * n; k = (int)(rU); rU -= k; /* rU becomes rU-[rU] */ if( rU < q[k] ) ans[i] = k+1; else ans[i] = a[k]+1; } Free(HL); Free(a); Free(q); } 2. make and make install 3. test the new sample function by code like > b=sample(seq(1,100), prob=seq(1,100), replace=TRUE, size=1000000) > table(b)/1000000*sum(seq(1,100)) 4. run the following code in current R 2.1.0 and updated R. for(prob in seq(1,4)){ for(sample in seq(1,4)){ x = seq(1:(10^prob)) # short to long x p = abs(rnorm(length(x))) # prob vector times = 10^(6-prob) # run shorter cases more times Rprof(paste("sample_", prob, "_", sample, ".prof", sep='')) for(t in seq(1,times)){ sample(x, prob=p, size=10^sample, replace=TRUE ) } Rprof(NULL) } } Basically, I tried to test the performance of sample(replace=TRUE, prob=..) with different length of x and size. 5. process the profiles and here is the result. p: length of prob and x size: size of sample cell: execution time of old/updated sample() size\p 10 10^2 10^3 10^4 10 2.4/1.6 0.32/0.22 0.20/0.08 0.24/0.06 10^2 3.1/2.6 0.48/0.28 0.28/0.06 0.30/0.06 10^3 11.8/11.1 1.84/1.14 0.94/0.18 0.96/0.08 10^4 96.8/96.6 15.34/9.68 7.54/1.06 7.48/0.16 run: 10000 1000 100 10 times We can see that the alias method is quicker than the linear search method in all cases. The performance difference is greatest (>50 times) when the original algorithm need to search in a long prob vector. I have not thoroughly tested the new function. I will do so if you (the developers) think that this has the potential to be incorporated into R. Thanks. Bo Peng Department of Statistics Rice University ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel