Hi everyone,

I’m porting a code from scikits.odes.sundials.cvode to PETSc, since it is
compatible with FEniCSx and can run in parallel with MPI. First, I used
Petsc with the "rk" solver, and it worked well, both serially and in
parallel for a system with 14000 nodes (42000 dofs).   However, when using
an implicit solver like bdf, the solver takes up all the memory (16 gb),
even on a small system. To do this, use this:


def ifunction(self, ts, t, y, ydot, f):


y.ghostUpdate(PETSc.InsertMode.INSERT_VALUES,PETSc.ScatterMode.FORWARD)
      y.copy(result=self.yv.x.petsc_vec)
      self.yv.x.scatter_forward()

      dydt = self.rhs(self.yv)
      dydt.x.scatter_forward()

      ydot.copy(result=f)
      f.axpy(-1.0, dydt.x.petsc_vec)

      return 0


y = y0.petsc_vec.copy()
ts.setType(ts.Type.BDF)
ts.setIFunction(ifunction)
ts.setTime(0.0)
ts.setTimeStep(1e-14)
ts.setStepLimits(1e-17,1e-12)
ts.setMaxTime(1.0e-12)
ts.setExactFinalTime(PETSc.TS.ExactFinalTime.STEPOVER)
ts.setTolerances(rtol=1e-6, atol=1e-6)
snes = ts.getSNES()
ksp = snes.getKSP()
ksp.setType("gmres")
ksp.getPC().setType("none")
ksp.setFromOptions()

For the scikits.odes.sundials.cvode library, in serial mode, I  have used:

solver = CVODE(rhs,
               old_api=False,
               linsolver='spgmr',
               rtol=1e-6,
               atol=1e-6,
               max_steps=5000,
               order=2)

In this case, the solver worked perfectly and obtained similar results to
the rk solver in PETSC. I suspect the issue might be related to the way the
Jacobian is built in PETSC, but scikits.odes.sundials.cvode works perfectly
without requiring the Jacobian. I would greatly appreciate any suggestions
or examples on how to properly set up the BDF solver with PETSc.
Thanks
Art

Reply via email to