Why the dot function/method is slower than @ on python 3.5.1? Tested from the 
latest 1.11 maintenance branch.



np.__version__
Out[39]: '1.11.0.dev0+Unknown'


%timeit A @ c
10000 loops, best of 3: 185 µs per loop


%timeit A.dot(c)
1000 loops, best of 3: 526 µs per loop


%timeit np.dot(A,c)
1000 loops, best of 3: 527 µs per loop


A.dtype, A.shape, A.flags
Out[43]: 
(dtype('float32'), (100, 100, 3),   C_CONTIGUOUS : True
   F_CONTIGUOUS : False
   OWNDATA : True
   WRITEABLE : True
   ALIGNED : True
   UPDATEIFCOPY : False)


c.dtype, c.shape, c.flags
Out[44]: 
(dtype('float32'), (3, 3),   C_CONTIGUOUS : True
   F_CONTIGUOUS : False
   OWNDATA : True
   WRITEABLE : True
   ALIGNED : True
   UPDATEIFCOPY : False)





From: NumPy-Discussion <numpy-discussion-boun...@scipy.org> on behalf of 
Charles R Harris <charlesr.har...@gmail.com>
Sent: 26 January 2016 22:49
To: numpy-discussion; SciPy Developers List; SciPy Users List
Subject: [Numpy-discussion] Numpy 1.11.0b1 is out
  



Hi All,

 I'm pleased to announce that  Numpy 1.11.0b1 is now available on sourceforge. 
This is a source release as the mingw32 toolchain is broken. Please test it out 
and report any errors that you discover. Hopefully we can do better with 1.11.0 
than we did with 1.10.0 ;)

 Chuck
    
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
https://mail.scipy.org/mailman/listinfo/numpy-discussion

Reply via email to