Probably a number of scipy places as well
import numpy import scipy.stats print numpy.__version__ print scipy.__version__ for s in range(16777214, 16777944): if scipy.stats.nanmean(numpy.ones((s, 1), numpy.float32))[0]!=1: print '\nbroke', s, scipy.stats.nanmean(numpy.ones((s, 1), numpy.float32)) break else: print '\r',s, c:\temp>python np_sum.py 1.8.0b2 0.11.0 16777216 broke 16777217 [ 0.99999994] _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion