Probably a number of scipy places as well


import numpy
import scipy.stats
print numpy.__version__
print scipy.__version__
for s in range(16777214, 16777944):
     if scipy.stats.nanmean(numpy.ones((s, 1), numpy.float32))[0]!=1:
         print '\nbroke', s, scipy.stats.nanmean(numpy.ones((s, 1), 
numpy.float32))
         break
     else:
         print '\r',s,

c:\temp>python np_sum.py
1.8.0b2
0.11.0
16777216
broke 16777217 [ 0.99999994]

_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
http://mail.scipy.org/mailman/listinfo/numpy-discussion

Reply via email to