I should include the scipy response too I guess.
scipy.linalg.eig(STIFM, MASSM) (array([ 3937.15984097+0.j, 3937.15984097+0.j, 3937.15984097+0.j, 3923.07692308+0.j, 3923.07692308+0.j, 7846.15384615+0.j]), array([[ 1., 0., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0., 0.], [ 0., 0., 1., 0., 0., 0.], [ 0., 0., 0., 1., 0., 0.], [ 0., 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 0., 1.]])) On Tue, Dec 20, 2011 at 9:14 PM, Fahreddın Basegmez <mangab...@gmail.com>wrote: > If I can get the same response as Matlab I would be all set. > > > Octave results > > >> STIFM > STIFM = > > Diagonal Matrix > > 1020 0 0 0 0 0 > 0 1020 0 0 0 0 > 0 0 1020 0 0 0 > 0 0 0 102000 0 0 > 0 0 0 0 102000 0 > 0 0 0 0 0 204000 > > >> MASSM > MASSM = > > Diagonal Matrix > > 0.25907 0 0 0 0 0 > 0 0.25907 0 0 0 0 > 0 0 0.25907 0 0 0 > 0 0 0 26.00000 0 0 > 0 0 0 0 26.00000 0 > 0 0 0 0 0 26.00000 > > >> [a, b] = eig(STIFM, MASSM) > a = > > 0.00000 0.00000 0.00000 1.96468 0.00000 0.00000 > 0.00000 0.00000 0.00000 0.00000 1.96468 0.00000 > 0.00000 0.00000 1.96468 0.00000 0.00000 0.00000 > 0.19612 0.00000 0.00000 0.00000 0.00000 0.00000 > 0.00000 0.19612 0.00000 0.00000 0.00000 0.00000 > 0.00000 0.00000 0.00000 0.00000 0.00000 0.19612 > > b = > > Diagonal Matrix > > 3923.1 0 0 0 0 0 > 0 3923.1 0 0 0 0 > 0 0 3937.2 0 0 0 > 0 0 0 3937.2 0 0 > 0 0 0 0 3937.2 0 > 0 0 0 0 0 7846.2 > > > Numpy Results > > >>> STIFM > array([[ 1020., 0., 0., 0., 0., 0.], > [ 0., 1020., 0., 0., 0., 0.], > [ 0., 0., 1020., 0., 0., 0.], > [ 0., 0., 0., 102000., 0., 0.], > [ 0., 0., 0., 0., 102000., 0.], > [ 0., 0., 0., 0., 0., 204000.]]) > > >>> MASSM > > array([[ 0.25907, 0. , 0. , 0. , 0. , 0. ], > [ 0. , 0.25907, 0. , 0. , 0. , 0. ], > [ 0. , 0. , 0.25907, 0. , 0. , 0. ], > [ 0. , 0. , 0. , 26. , 0. , 0. ], > [ 0. , 0. , 0. , 0. , 26. , 0. ], > [ 0. , 0. , 0. , 0. , 0. , 26. ]]) > > >>> a, b = linalg.eig(dot( linalg.pinv(MASSM), STIFM)) > > >>> a > > array([ 3937.15984097, 3937.15984097, 3937.15984097, 3923.07692308, > 3923.07692308, 7846.15384615]) > > >>> b > > array([[ 1., 0., 0., 0., 0., 0.], > [ 0., 1., 0., 0., 0., 0.], > [ 0., 0., 1., 0., 0., 0.], > [ 0., 0., 0., 1., 0., 0.], > [ 0., 0., 0., 0., 1., 0.], > [ 0., 0., 0., 0., 0., 1.]]) > > On Tue, Dec 20, 2011 at 8:40 PM, Olivier Delalleau <sh...@keba.be> wrote: > >> Hmm... ok ;) (sorry, I can't follow you there) >> >> Anyway, what kind of non-normalization are you after? I looked at the doc >> for Matlab and it just says eigenvectors are not normalized, without >> additional details... so it looks like it could be anything. >> >> >> -=- Olivier >> >> 2011/12/20 Fahreddın Basegmez <mangab...@gmail.com> >> >>> I am computing normal-mode frequency response of a mass-spring system. >>> The algorithm I am using requires it. >>> >>> On Tue, Dec 20, 2011 at 8:10 PM, Olivier Delalleau <sh...@keba.be>wrote: >>> >>>> I'm probably missing something, but... Why would you want >>>> non-normalized eigenvectors? >>>> >>>> -=- Olivier >>>> >>>> >>>> 2011/12/20 Fahreddın Basegmez <mangab...@gmail.com> >>>> >>>>> Howdy, >>>>> >>>>> Is it possible to get non-normalized eigenvectors from >>>>> scipy.linalg.eig(a, b)? Preferably just by using numpy. >>>>> >>>>> BTW, Matlab/Octave provides this with its eig(a, b) function but I >>>>> would like to use numpy for obvious reasons. >>>>> >>>>> Regards, >>>>> >>>>> Fahri >>>>> >>>> >> _______________________________________________ >> NumPy-Discussion mailing list >> NumPy-Discussion@scipy.org >> http://mail.scipy.org/mailman/listinfo/numpy-discussion >> >> >
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion