As far as I can tell ma.mean() is working as expected here: it computes the mean only over non-masked values. If you want to get rid of any mean that was computed over a series containing masked value you can do:
b = a.mean(0) b.mask[a.mask.any(0)] = True Then b will be: masked_array(data = [5.0 -- -- 8.0 9.0 -- 11.0 12.0 -- 14.0], mask = [False True True False False True False False True False], fill_value = 1e+20) -=- Olivier 2011/10/18 Chao YUE <chaoyue...@gmail.com> > Dear all, > > previoulsy I think np.ma.mean() will automatically filter the masked > (missing) value but it's not? > In [489]: a=np.arange(20.).reshape(2,10) > > In [490]: > a=np.ma.masked_array(a,(a==2)|(a==5)|(a==11)|(a==18),fill_value=np.nan) > > In [491]: a > Out[491]: > masked_array(data = > [[0.0 1.0 -- 3.0 4.0 -- 6.0 7.0 8.0 9.0] > [10.0 -- 12.0 13.0 14.0 15.0 16.0 17.0 -- 19.0]], > mask = > [[False False True False False True False False False False] > [False True False False False False False False True False]], > fill_value = nan) > > In [492]: a.mean(0) > Out[492]: > masked_array(data = [5.0 1.0 12.0 8.0 9.0 15.0 11.0 12.0 8.0 14.0], > mask = [False False False False False False False False False > False], > fill_value = 1e+20) > > In [494]: np.ma.mean(a,0) > Out[494]: > masked_array(data = [5.0 1.0 12.0 8.0 9.0 15.0 11.0 12.0 8.0 14.0], > mask = [False False False False False False False False False > False], > fill_value = 1e+20) > > In [495]: np.ma.mean(a,0)==a.mean(0) > Out[495]: > masked_array(data = [ True True True True True True True True True > True], > mask = False, > fill_value = True) > > only use a.filled().mean(0) can I get the result I want: > In [496]: a.filled().mean(0) > Out[496]: array([ 5., NaN, NaN, 8., 9., NaN, 11., 12., NaN, > 14.]) > > I am doing this because I tried to have a small fuction from the web to do > moving average for data: > > import numpy as np > def rolling_window(a, window): > if window < 1: > raise ValueError, "`window` must be at least 1." > if window > a.shape[-1]: > raise ValueError, "`window` is too long." > shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) > strides = a.strides + (a.strides[-1],) > return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) > > > def move_ave(a,window): > temp=rolling_window(a,window) > pre=int(window)/2 > post=int(window)-pre-1 > return > np.concatenate((a[...,0:pre],np.mean(temp,-1),a[...,-post:]),axis=-1) > > > In [489]: a=np.arange(20.).reshape(2,10) > > In [499]: move_ave(a,4) > Out[499]: > masked_array(data = > [[ 0. 1. 1.5 2.5 3.5 4.5 5.5 6.5 7.5 9. ] > [ 10. 11. 11.5 12.5 13.5 14.5 15.5 16.5 17.5 19. ]], > mask = > False, > fill_value = 1e+20) > > thanks, > > Chao > > -- > > *********************************************************************************** > Chao YUE > Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL) > UMR 1572 CEA-CNRS-UVSQ > Batiment 712 - Pe 119 > 91191 GIF Sur YVETTE Cedex > Tel: (33) 01 69 08 29 02; Fax:01.69.08.77.16 > > ************************************************************************************ > > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion > >
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion