On Fri, Aug 19, 2011 at 12:37 PM, Bruce Southey <bsout...@gmail.com> wrote:
> Hi, > Just some immediate minor observations that are really about trying to > be consistent: > > 1) Could you keep the display of the NA dtype be the same as the array? > For example, NA dtype is displayed as '<f8' but should be displayed as > 'float64' as that is the array dtype. > >>> a=np.array([[1,2,3,np.NA], [3,4,np.nan,5]]) > >>> a > array([[ 1., 2., 3., NA], > [ 3., 4., nan, 5.]]) > >>> a.dtype > dtype('float64') > >>> a.sum() > NA(dtype='<f8') > > 2) Can the 'skipna' flag be added to the methods? > >>> a.sum(skipna=True) > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > TypeError: 'skipna' is an invalid keyword argument for this function > >>> np.sum(a,skipna=True) > nan > > 3) Can the skipna flag be extended to exclude other non-finite cases like > NaN? > > 4) Assigning a np.NA needs a better error message but the Integer > array case is more informative: > >>> b=np.array([1,2,3,4], dtype=np.float128) > >>> b[0]=np.NA > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > TypeError: float() argument must be a string or a number > > >>> j=np.array([1,2,3]) > >>> j > array([1, 2, 3]) > >>> j[0]=ina > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > TypeError: int() argument must be a string or a number, not 'numpy.NAType' > > But it is nice that np.NA 'adjusts' to the insertion array: > >>> b.flags.maskna = True > >>> ana > NA(dtype='<f8') > >>> b[0]=ana > >>> b[0] > NA(dtype='<f16') > > 5) Different display depending on masked state. That is I think that > 'maskna=True' should be displayed always when flags.maskna is True : > >>> j=np.array([1,2,3], dtype=np.int8) > >>> j > array([1, 2, 3], dtype=int8) > >>> j.flags.maskna=True > >>> j > array([1, 2, 3], maskna=True, dtype=int8) > >>> j[0]=np.NA > >>> j > array([NA, 2, 3], dtype=int8) # Ithink it should still display > 'maskna=True'. > > My main peeve is that NA is upper case ;) I suppose that could use some discussion. Chuck
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion