Just a few extra tests on my side pushing the limits of my system memory: In [34]: k = np.zeros((21601, 10801, 3), dtype='int16') k ndarray 21601x10801x3: 699937203 elems, type `int16`, 1399874406 bytes (1335 Mb)
And for the first time my memory explodes with a hard kernel crash: In [36]: k = np.zeros((21601, 10801, 13), dtype='int16') Message from syslogd@ccn at Aug 3 10:51:43 ... kernel:[48715.531155] ------------[ cut here ]------------ Message from syslogd@ccn at Aug 3 10:51:43 ... kernel:[48715.531163] invalid opcode: 0000 [#1] SMP Message from syslogd@ccn at Aug 3 10:51:43 ... kernel:[48715.531166] last sysfs file: /sys/devices/system/cpu/cpu3/cache/index2/shared_cpu_map Message from syslogd@ccn at Aug 3 10:51:43 ... kernel:[48715.531253] Stack: Message from syslogd@ccn at Aug 3 10:51:43 ... kernel:[48715.531265] Call Trace: Message from syslogd@ccn at Aug 3 10:51:43 ... kernel:[48715.531332] Code: be 33 01 00 00 48 89 fb 48 c7 c7 67 31 7a 81 e8 b0 2d f1 ff e8 90 f2 33 00 48 89 df e8 86 db 00 00 48 83 bb 60 01 00 00 00 74 02 <0f> 0b 48 8b 83 10 02 00 00 a8 20 75 02 0f 0b a8 40 74 02 0f 0b On Wed, Aug 3, 2011 at 10:46 AM, Gökhan Sever <gokhanse...@gmail.com> wrote: > Here are my values for your comparison: > > test.nc file is about 715 MB. The details are below: > > In [21]: netCDF4.__version__ > Out[21]: '0.9.4' > > In [22]: np.__version__ > Out[22]: '2.0.0.dev-b233716' > > In [23]: from netCDF4 import Dataset > > In [24]: f = Dataset("test.nc") > > In [25]: f.variables['reflectivity'].shape > Out[25]: (6, 18909, 506) > > In [26]: f.variables['reflectivity'].size > Out[26]: 57407724 > > In [27]: f.variables['reflectivity'][:].dtype > Out[27]: dtype('float32') > > In [28]: timeit z = f.variables['reflectivity'][:] > 1 loops, best of 3: 731 ms per loop > > How long it takes in your side to read that big array? > > On Wed, Aug 3, 2011 at 10:30 AM, Kiko <kikocorre...@gmail.com> wrote: > >> Hi. >> >> I'm trying to read a big netcdf file (445 Mb) using netcdf4-python. >> >> The data are described as: >> *The GEBCO gridded data set is stored in NetCDF as a one dimensional >> array of 2-byte signed integers that represent integer elevations in metres. >> >> The complete data set gives global coverage. It consists of 21601 x 10801 >> data values, one for each one minute of latitude and longitude for 233312401 >> points. >> The data start at position 90°N, 180°W and are arranged in bands of 360 >> degrees x 60 points/degree + 1 = 21601 values. The data range eastward from >> 180°W longitude to 180°E longitude, i.e. the 180° value is repeated.* >> >> The problem is that it is very slow (or I am quite newbie). >> >> Anyone has a suggestion to get these data in a numpy array in a faster >> way? >> >> Thanks in advance. >> >> _______________________________________________ >> NumPy-Discussion mailing list >> NumPy-Discussion@scipy.org >> http://mail.scipy.org/mailman/listinfo/numpy-discussion >> >> > > > -- > Gökhan > -- Gökhan
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion