I also get the same issue with prod() On Mon, Jan 24, 2011 at 10:23 AM, Warren Weckesser < warren.weckes...@enthought.com> wrote:
> I see the same "randomness", but at a different array size: > > In [23]: numpy.__version__ > Out[23]: '1.4.0' > > In [24]: import numexpr > > In [25]: numexpr.__version__ > Out[25]: '1.4.1' > > In [26]: x = zeros(8192)+0.01 > > In [27]: print evaluate('sum(x, axis=0)') > 72.97 > > In [28]: print evaluate('sum(x, axis=0)') > 66.92 > > In [29]: print evaluate('sum(x, axis=0)') > 67.9 > > In [30]: x = zeros(8193)+0.01 > > In [31]: print evaluate('sum(x, axis=0)') > 72.63 > > In [32]: print evaluate('sum(x, axis=0)') > 71.74 > > In [33]: print evaluate('sum(x, axis=0)') > 81.93 > > In [34]: x = zeros(8191)+0.01 > > In [35]: print evaluate('sum(x, axis=0)') > 81.91 > > In [36]: print evaluate('sum(x, axis=0)') > 81.91 > > > Warren > > > > On Mon, Jan 24, 2011 at 12:19 PM, John Salvatier < > jsalv...@u.washington.edu> wrote: > >> Forgot to mention that I am using numexpr 1.4.1 and numpy 1.5.1 >> >> >> On Mon, Jan 24, 2011 at 9:47 AM, John Salvatier < >> jsalv...@u.washington.edu> wrote: >> >>> Hello, >>> >>> I have discovered a strange bug with numexpr. numexpr.evaluate gives >>> randomized results on arrays larger than 2047 elements. The following >>> program demonstrates this: >>> >>> from numpy import * >>> from numexpr import evaluate >>> >>> def func(x): >>> >>> return evaluate("sum(x, axis = 0)") >>> >>> >>> x = zeros(2048)+.01 >>> >>> print evaluate("sum(x, axis = 0)") >>> print evaluate("sum(x, axis = 0)") >>> >>> For me this prints different results each time, for example: >>> >>> 11.67 >>> 14.84 >>> >>> If we set the size to 2047 I get consistent results. >>> >>> 20.47 >>> 20.47 >>> >>> Interestingly, if I do not add .01 to x, it consistently sums to 0. >> >> >> >> _______________________________________________ >> NumPy-Discussion mailing list >> NumPy-Discussion@scipy.org >> http://mail.scipy.org/mailman/listinfo/numpy-discussion >> >> > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion > >
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion