Hi, I'm getting some strange behavior with logaddexp2.reduce:
from itertools import permutations import numpy as np x = np.array([-53.584962500721154, -1.5849625007211563, -0.5849625007211563]) for p in permutations([0,1,2]): print p, np.logaddexp2.reduce(x[list(p)]) Essentially, the result depends on the order of the array...and we get nans in the "bad" orders. Likely, this also affects logaddexp. _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion