On 11/29/06, Mathew Yeates <[EMAIL PROTECTED]> wrote:
whoa. I just found out that A=A.transpose() does nothing but change A's flags from C_CONTIGUOUS to F_CONTIGUOUS!! Okay, so heres the question ...... I am reading data into the columns of a matrix. In order to speed this up, I want to read values into the rows of a matrix and when I am all done, do a transpose. Whats the best way?
If you want a contiguous copy In [13]: a Out[13]: array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) In [14]: b=a.transpose().copy() In [15]: a.flags Out[15]: C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : False WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False In [16]: b.flags Out[16]: C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False The result isn't memory mapped, however. What exactly are you trying to do? Chuck
_______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://projects.scipy.org/mailman/listinfo/numpy-discussion