On 11/29/06, Mathew Yeates <[EMAIL PROTECTED]> wrote:

whoa. I just found out that A=A.transpose() does nothing but change A's
flags from C_CONTIGUOUS to F_CONTIGUOUS!!

Okay, so heres the question ...... I am reading data into the columns of
a matrix. In order to speed this up, I want to read values into the rows
of a matrix and when I am all done, do a transpose. Whats the best way?


If you want a contiguous copy

In [13]: a
Out[13]:
array([[0, 1, 2, 3, 4],
      [5, 6, 7, 8, 9]])

In [14]: b=a.transpose().copy()

In [15]: a.flags
Out[15]:
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : False
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False

In [16]: b.flags
Out[16]:
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False

The result isn't memory mapped, however. What exactly are you trying to do?

Chuck
_______________________________________________
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion

Reply via email to