I am looking for a way to create an array of the same type as another given array (but of different shape) that works both with Numeric and NumPy without being unreasonably slow. In other words, I am looking for a a replacement for the expression
array2 = Numeric.zeros(shape, array1.typecode()) that will *also* (not *only*) work under NumPy (where typecode() became dtype.char). An obvious idea is reshaping array1 and multiplying by 0., but that can become quite costly. Any ideas? Konrad. -- --------------------------------------------------------------------- Konrad Hinsen Centre de Biophysique Moléculaire, CNRS Orléans Synchrotron Soleil - Division Expériences Saint Aubin - BP 48 91192 Gif sur Yvette Cedex, France Tel. +33-1 69 35 97 15 E-Mail: [EMAIL PROTECTED] --------------------------------------------------------------------- _______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://projects.scipy.org/mailman/listinfo/numpy-discussion