Den ons 19 dec. 2018 kl 01:55 skrev William Tu <u9012...@gmail.com>: > > The patch adds support for AF_XDP async xmit. Users can use > AF_XDP on both side of the veth and get better performance, with > the cost of ksoftirqd doing the xmit. The veth_xsk_async_xmit > simply kicks the napi function, veth_poll, to run, and the transmit > logic is implemented there. > > Tested using two namespaces, one runs xdpsock and the other runs > xdp_rxq_info. A simple script comparing the performance with/without > AF_XDP shows improvement from 724Kpps to 1.1Mpps. > > ip netns add at_ns0 > ip link add p0 type veth peer name p1 > ip link set p0 netns at_ns0 > ip link set dev p1 up > ip netns exec at_ns0 ip link set dev p0 up > > # receiver > ip netns exec at_ns0 xdp_rxq_info --dev p0 --action XDP_DROP > > # sender > xdpsock -i p1 -t -N -z > or > xdpsock -i p1 -t -S > > Signed-off-by: William Tu <u9012...@gmail.com> > --- > drivers/net/veth.c | 199 > ++++++++++++++++++++++++++++++++++++++++++++++++++++- > 1 file changed, 197 insertions(+), 2 deletions(-) > > diff --git a/drivers/net/veth.c b/drivers/net/veth.c > index f412ea1cef18..0ce89820ce70 100644 > --- a/drivers/net/veth.c > +++ b/drivers/net/veth.c > @@ -25,6 +25,10 @@ > #include <linux/ptr_ring.h> > #include <linux/bpf_trace.h> > #include <linux/net_tstamp.h> > +#include <net/xdp_sock.h> > +#include <linux/mm.h> > +#include <linux/slab.h> > +#include <net/page_pool.h> > > #define DRV_NAME "veth" > #define DRV_VERSION "1.0" > @@ -53,6 +57,8 @@ struct veth_rq { > bool rx_notify_masked; > struct ptr_ring xdp_ring; > struct xdp_rxq_info xdp_rxq; > + struct xdp_umem *xsk_umem; > + u16 qid; > }; > > struct veth_priv { > @@ -737,15 +743,108 @@ static int veth_xdp_rcv(struct veth_rq *rq, int > budget, unsigned int *xdp_xmit) > return done; > } > > +static int veth_xsk_send(struct napi_struct *napi, int budget) > +{ > + struct veth_rq *rq = > + container_of(napi, struct veth_rq, xdp_napi); > + int done = 0; > + > + /* tx: use netif_tx_napi_add? */ > + while (rq->xsk_umem && budget--) { > + struct veth_priv *priv, *peer_priv; > + struct net_device *dev, *peer_dev; > + unsigned int inner_xdp_xmit = 0; > + unsigned int metasize = 0; > + struct veth_rq *peer_rq; > + struct xdp_frame *xdpf; > + bool dropped = false; > + struct sk_buff *skb; > + struct page *page; > + void *vaddr; > + void *addr; > + u32 len; > + > + if (!xsk_umem_consume_tx_virtual(rq->xsk_umem, &vaddr, &len)) > + break; > + > + page = dev_alloc_page(); > + if (!page) { > + pr_warn("veth: page allocation fails\n"); > + xsk_umem_complete_tx(rq->xsk_umem, 1); > + xsk_umem_consume_tx_done(rq->xsk_umem); > + return -ENOMEM; > + } > + > + addr = page_to_virt(page); > + xdpf = addr; > + memset(xdpf, 0, sizeof(*xdpf)); > + > + addr += sizeof(*xdpf); > + memcpy(addr, vaddr, len); > + > + xdpf->data = addr + metasize; > + xdpf->len = len; > + xdpf->headroom = 0; > + xdpf->metasize = metasize; > + xdpf->mem.type = MEM_TYPE_PAGE_SHARED; > + > + /* Invoke peer rq to rcv */ > + dev = rq->dev; > + priv = netdev_priv(dev); > + peer_dev = priv->peer; > + peer_priv = netdev_priv(peer_dev); > + peer_rq = &peer_priv->rq[rq->qid]; > + > + /* put into peer rq */ > + skb = veth_xdp_rcv_one(peer_rq, xdpf, &inner_xdp_xmit); > + if (!skb) { > + /* Peer side has XDP program attached */ > + if (inner_xdp_xmit & VETH_XDP_TX) { > + /* Not supported */ > + pr_warn("veth: peer XDP_TX not supported\n"); > + xdp_return_frame(xdpf); > + dropped = true; > + goto skip_tx; > + } else if (inner_xdp_xmit & VETH_XDP_REDIR) { > + xdp_do_flush_map(); > + } else { > + dropped = true; > + } > + } else { > + /* Peer side has no XDP attached */ > + napi_gro_receive(&peer_rq->xdp_napi, skb); > + } > +skip_tx: > + xsk_umem_complete_tx(rq->xsk_umem, 1); > + xsk_umem_consume_tx_done(rq->xsk_umem); > + > + /* update peer stats */ > + u64_stats_update_begin(&peer_rq->stats.syncp); > + peer_rq->stats.xdp_packets++; > + peer_rq->stats.xdp_bytes += len; > + if (dropped) > + rq->stats.xdp_drops++; > + u64_stats_update_end(&peer_rq->stats.syncp); > + done++; > + } > + > + return done; > +} > + > static int veth_poll(struct napi_struct *napi, int budget) > { > struct veth_rq *rq = > container_of(napi, struct veth_rq, xdp_napi); > unsigned int xdp_xmit = 0; > - int done; > + int done = 0; > + int tx_done; > + > + tx_done = veth_xsk_send(napi, budget); > + if (tx_done > 0) > + done += tx_done; > > xdp_set_return_frame_no_direct(); > - done = veth_xdp_rcv(rq, budget, &xdp_xmit); > + done += veth_xdp_rcv(rq, budget, &xdp_xmit); > > if (done < budget && napi_complete_done(napi, done)) { > /* Write rx_notify_masked before reading ptr_ring */ > @@ -776,6 +875,7 @@ static int veth_napi_add(struct net_device *dev) > err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, > GFP_KERNEL); > if (err) > goto err_xdp_ring; > + rq->qid = i; > } > > for (i = 0; i < dev->real_num_rx_queues; i++) { > @@ -812,6 +912,7 @@ static void veth_napi_del(struct net_device *dev) > netif_napi_del(&rq->xdp_napi); > rq->rx_notify_masked = false; > ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free); > + rq->qid = -1; > } > } > > @@ -836,6 +937,7 @@ static int veth_enable_xdp(struct net_device *dev) > > /* Save original mem info as it can be overwritten */ > rq->xdp_mem = rq->xdp_rxq.mem; > + rq->qid = i; > } > > err = veth_napi_add(dev); > @@ -1115,6 +1217,78 @@ static u32 veth_xdp_query(struct net_device *dev) > return 0; > } > > +int veth_xsk_umem_query(struct net_device *dev, struct xdp_umem **umem, > + u16 qid) > +{ > + struct xdp_umem *queried_umem; > + > + queried_umem = xdp_get_umem_from_qid(dev, qid); > + > + if (!queried_umem) > + return -EINVAL; > + > + *umem = queried_umem; > + return 0; > +} > + > +static int veth_xsk_umem_enable(struct net_device *dev, > + struct xdp_umem *umem, > + u16 qid) > +{ > + struct veth_priv *priv = netdev_priv(dev); > + struct xdp_umem_fq_reuse *reuseq; > + int err = 0; > + > + if (qid >= dev->real_num_rx_queues) > + return -EINVAL; > + > + reuseq = xsk_reuseq_prepare(priv->rq[0].xdp_ring.size); > + if (!reuseq) > + return -ENOMEM; > + > + xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); > + > + priv->rq[qid].xsk_umem = umem; > + return err; > +} > + > +static int veth_xsk_umem_disable(struct net_device *dev, > + u16 qid) > +{ > + struct veth_priv *priv = netdev_priv(dev); > + struct xdp_umem *umem; > + > + umem = xdp_get_umem_from_qid(dev, qid); > + if (!umem) > + return -EINVAL; > + > + priv->rq[qid].xsk_umem = NULL; > + return 0; > +} > + > +int veth_xsk_umem_setup(struct net_device *dev, struct xdp_umem *umem, > + u16 qid) > +{ > + return umem ? veth_xsk_umem_enable(dev, umem, qid) : > + veth_xsk_umem_disable(dev, qid); > +} > + > +int veth_xsk_async_xmit(struct net_device *dev, u32 qid) > +{ > + struct veth_priv *priv = netdev_priv(dev); > + struct veth_rq *rq; > + > + rq = &priv->rq[qid]; > + > + if (qid >= dev->real_num_rx_queues) > + return -ENXIO; > + > + if (!napi_if_scheduled_mark_missed(&rq->xdp_napi)) > + napi_schedule(&rq->xdp_napi); > + > + return 0; > +} > + > static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp) > { > switch (xdp->command) { > @@ -1123,6 +1297,26 @@ static int veth_xdp(struct net_device *dev, struct > netdev_bpf *xdp) > case XDP_QUERY_PROG: > xdp->prog_id = veth_xdp_query(dev); > return 0; > + case XDP_QUERY_XSK_UMEM: > + return veth_xsk_umem_query(dev, &xdp->xsk.umem, > + xdp->xsk.queue_id); > + case XDP_SETUP_XSK_UMEM: { > + struct veth_priv *priv; > + int err; > + > + /* Enable XDP on both sides */ > + err = veth_enable_xdp(dev); > + if (err) > + return err; > + > + priv = netdev_priv(dev); > + err = veth_enable_xdp(priv->peer);
Hmm, setting the umem on one peer, enables XDP on both ends? Why? I'm think there's some inconsistency with this patch -- again I might be missing something. To get some clarity, here are a couple of questions/statements/thoughts: For a veth pair A and B, B is XDP enabled. Transmissions from A or XDP_REDIRECT to A, will put the xdpf/skb onto B's Rx ring, and eventually schedule B napi context (from flush). B's napi poll will execute, draining the queue and execute the XDP program. In this patch, if A runs AF_XDP xmit, you schedule A's napi context, and execute B's receive path in that context. This is racy, right? What you'd like is that, if B is running in a napi-mode, the sendmsg schedules *B's* napi, and drain A's AF_XDP Tx ring in B's receive path. What would be the method to drain A's AF_XDP Tx ring if B is *not* running in napi (i.e. in XDP mode)? Schedule A's napi, build skb and pass it to the peer B? Another approach is that when a A has AF_XDP enabled, enable napi B to mode, and drain from B's napi poll. Is this why you "enable XDP on both sides", even if one peer hasn't an XDP program set (enabling XDP -> enable napi for that peer)? Björn > + if (err) > + return err; > + > + return veth_xsk_umem_setup(dev, xdp->xsk.umem, > + xdp->xsk.queue_id); > + } > default: > return -EINVAL; > } > @@ -1145,6 +1339,7 @@ static const struct net_device_ops veth_netdev_ops = { > .ndo_set_rx_headroom = veth_set_rx_headroom, > .ndo_bpf = veth_xdp, > .ndo_xdp_xmit = veth_xdp_xmit, > + .ndo_xsk_async_xmit = veth_xsk_async_xmit, > }; > > #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \ > -- > 2.7.4 >