From: Sebastian Siewior <[EMAIL PROTECTED]>

Share the tables and set_key function.

Signed-off-by: Sebastian Siewior <[EMAIL PROTECTED]>
---
 crypto/Kconfig       |    1 +
 crypto/aes_generic.c |  281 ++++++--------------------------------------------
 2 files changed, 35 insertions(+), 247 deletions(-)

diff --git a/crypto/Kconfig b/crypto/Kconfig
index 26130d0..17b11b8 100644
--- a/crypto/Kconfig
+++ b/crypto/Kconfig
@@ -308,6 +308,7 @@ config CRYPTO_SERPENT
 config CRYPTO_AES
        tristate "AES cipher algorithms"
        select CRYPTO_ALGAPI
+       select CRYPTO_AES_COMMON
        help
          AES cipher algorithms (FIPS-197). AES uses the Rijndael 
          algorithm.
diff --git a/crypto/aes_generic.c b/crypto/aes_generic.c
index 6683260..fc827cd 100644
--- a/crypto/aes_generic.c
+++ b/crypto/aes_generic.c
@@ -47,11 +47,6 @@
  * ---------------------------------------------------------------------------
  */
 
-/* Some changes from the Gladman version:
-    s/RIJNDAEL(e_key)/E_KEY/g
-    s/RIJNDAEL(d_key)/D_KEY/g
-*/
-
 #include <crypto/aes.h>
 #include <linux/module.h>
 #include <linux/init.h>
@@ -69,236 +64,29 @@ byte(const u32 x, const unsigned n)
        return x >> (n << 3);
 }
 
-struct aes_ctx {
-       int key_length;
-       u32 buf[120];
-};
-
-#define E_KEY (&ctx->buf[0])
-#define D_KEY (&ctx->buf[60])
-
-static u8 pow_tab[256] __initdata;
-static u8 log_tab[256] __initdata;
-static u8 sbx_tab[256] __initdata;
-static u8 isb_tab[256] __initdata;
-static u32 rco_tab[10];
-static u32 ft_tab[4][256];
-static u32 it_tab[4][256];
-
-static u32 fl_tab[4][256];
-static u32 il_tab[4][256];
-
-static inline u8 __init
-f_mult (u8 a, u8 b)
-{
-       u8 aa = log_tab[a], cc = aa + log_tab[b];
-
-       return pow_tab[cc + (cc < aa ? 1 : 0)];
-}
-
-#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
-
 #define f_rn(bo, bi, n, k)                                     \
-    bo[n] =  ft_tab[0][byte(bi[n],0)] ^                                \
-             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^              \
-             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
-             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+    bo[n] =  crypto_ft_tab[0][byte(bi[n],0)] ^                         \
+             crypto_ft_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
+             crypto_ft_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
+             crypto_ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 
 #define i_rn(bo, bi, n, k)                                     \
-    bo[n] =  it_tab[0][byte(bi[n],0)] ^                                \
-             it_tab[1][byte(bi[(n + 3) & 3],1)] ^              \
-             it_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
-             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#define ls_box(x)                              \
-    ( fl_tab[0][byte(x, 0)] ^                  \
-      fl_tab[1][byte(x, 1)] ^                  \
-      fl_tab[2][byte(x, 2)] ^                  \
-      fl_tab[3][byte(x, 3)] )
+    bo[n] =  crypto_it_tab[0][byte(bi[n],0)] ^                         \
+             crypto_it_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
+             crypto_it_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
+             crypto_it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 
 #define f_rl(bo, bi, n, k)                                     \
-    bo[n] =  fl_tab[0][byte(bi[n],0)] ^                                \
-             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^              \
-             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
-             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+    bo[n] =  crypto_fl_tab[0][byte(bi[n],0)] ^                         \
+             crypto_fl_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
+             crypto_fl_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
+             crypto_fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 
 #define i_rl(bo, bi, n, k)                                     \
-    bo[n] =  il_tab[0][byte(bi[n],0)] ^                                \
-             il_tab[1][byte(bi[(n + 3) & 3],1)] ^              \
-             il_tab[2][byte(bi[(n + 2) & 3],2)] ^              \
-             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-static void __init
-gen_tabs (void)
-{
-       u32 i, t;
-       u8 p, q;
-
-       /* log and power tables for GF(2**8) finite field with
-          0x011b as modular polynomial - the simplest primitive
-          root is 0x03, used here to generate the tables */
-
-       for (i = 0, p = 1; i < 256; ++i) {
-               pow_tab[i] = (u8) p;
-               log_tab[p] = (u8) i;
-
-               p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
-       }
-
-       log_tab[1] = 0;
-
-       for (i = 0, p = 1; i < 10; ++i) {
-               rco_tab[i] = p;
-
-               p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
-       }
-
-       for (i = 0; i < 256; ++i) {
-               p = (i ? pow_tab[255 - log_tab[i]] : 0);
-               q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
-               p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
-               sbx_tab[i] = p;
-               isb_tab[p] = (u8) i;
-       }
-
-       for (i = 0; i < 256; ++i) {
-               p = sbx_tab[i];
-
-               t = p;
-               fl_tab[0][i] = t;
-               fl_tab[1][i] = rol32(t, 8);
-               fl_tab[2][i] = rol32(t, 16);
-               fl_tab[3][i] = rol32(t, 24);
-
-               t = ((u32) ff_mult (2, p)) |
-                   ((u32) p << 8) |
-                   ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
-
-               ft_tab[0][i] = t;
-               ft_tab[1][i] = rol32(t, 8);
-               ft_tab[2][i] = rol32(t, 16);
-               ft_tab[3][i] = rol32(t, 24);
-
-               p = isb_tab[i];
-
-               t = p;
-               il_tab[0][i] = t;
-               il_tab[1][i] = rol32(t, 8);
-               il_tab[2][i] = rol32(t, 16);
-               il_tab[3][i] = rol32(t, 24);
-
-               t = ((u32) ff_mult (14, p)) |
-                   ((u32) ff_mult (9, p) << 8) |
-                   ((u32) ff_mult (13, p) << 16) |
-                   ((u32) ff_mult (11, p) << 24);
-
-               it_tab[0][i] = t;
-               it_tab[1][i] = rol32(t, 8);
-               it_tab[2][i] = rol32(t, 16);
-               it_tab[3][i] = rol32(t, 24);
-       }
-}
-
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 
0x1b)
-
-#define imix_col(y,x)       \
-    u   = star_x(x);        \
-    v   = star_x(u);        \
-    w   = star_x(v);        \
-    t   = w ^ (x);          \
-   (y)  = u ^ v ^ w;        \
-   (y) ^= ror32(u ^ t,  8) ^ \
-          ror32(v ^ t, 16) ^ \
-          ror32(t,24)
-
-/* initialise the key schedule from the user supplied key */
-
-#define loop4(i)                                    \
-{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
-    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
-    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
-    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
-    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
-}
-
-#define loop6(i)                                    \
-{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
-    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
-    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
-    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
-    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
-    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
-    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
-}
-
-#define loop8(i)                                    \
-{   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
-    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
-    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
-    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
-    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
-    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
-    E_KEY[8 * i + 12] = t;                \
-    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
-    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
-    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
-}
-
-static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
-                      unsigned int key_len)
-{
-       struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
-       const __le32 *key = (const __le32 *)in_key;
-       u32 *flags = &tfm->crt_flags;
-       u32 i, t, u, v, w;
-
-       if (key_len % 8) {
-               *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
-               return -EINVAL;
-       }
-
-       ctx->key_length = key_len;
-
-       E_KEY[0] = le32_to_cpu(key[0]);
-       E_KEY[1] = le32_to_cpu(key[1]);
-       E_KEY[2] = le32_to_cpu(key[2]);
-       E_KEY[3] = le32_to_cpu(key[3]);
-
-       switch (key_len) {
-       case 16:
-               t = E_KEY[3];
-               for (i = 0; i < 10; ++i)
-                       loop4 (i);
-               break;
-
-       case 24:
-               E_KEY[4] = le32_to_cpu(key[4]);
-               t = E_KEY[5] = le32_to_cpu(key[5]);
-               for (i = 0; i < 8; ++i)
-                       loop6 (i);
-               break;
-
-       case 32:
-               E_KEY[4] = le32_to_cpu(key[4]);
-               E_KEY[5] = le32_to_cpu(key[5]);
-               E_KEY[6] = le32_to_cpu(key[6]);
-               t = E_KEY[7] = le32_to_cpu(key[7]);
-               for (i = 0; i < 7; ++i)
-                       loop8 (i);
-               break;
-       }
-
-       D_KEY[0] = E_KEY[0];
-       D_KEY[1] = E_KEY[1];
-       D_KEY[2] = E_KEY[2];
-       D_KEY[3] = E_KEY[3];
-
-       for (i = 4; i < key_len + 24; ++i) {
-               imix_col (D_KEY[i], E_KEY[i]);
-       }
-
-       return 0;
-}
+    bo[n] =  crypto_il_tab[0][byte(bi[n],0)] ^                         \
+             crypto_il_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
+             crypto_il_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
+             crypto_il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 
 /* encrypt a block of text */
 
@@ -317,23 +105,24 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 
*in_key,
 
 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 {
-       const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+       const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
        const __le32 *src = (const __le32 *)in;
        __le32 *dst = (__le32 *)out;
        u32 b0[4], b1[4];
-       const u32 *kp = E_KEY + 4;
+       const int key_len = ctx->key_length;
+       const u32 *kp = ctx->key_enc + 4;
 
-       b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
-       b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
-       b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
-       b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
+       b0[0] = le32_to_cpu(src[0]) ^ ctx->key_enc[0];
+       b0[1] = le32_to_cpu(src[1]) ^ ctx->key_enc[1];
+       b0[2] = le32_to_cpu(src[2]) ^ ctx->key_enc[2];
+       b0[3] = le32_to_cpu(src[3]) ^ ctx->key_enc[3];
 
-       if (ctx->key_length > 24) {
+       if (key_len > 24) {
                f_nround (b1, b0, kp);
                f_nround (b0, b1, kp);
        }
 
-       if (ctx->key_length > 16) {
+       if (key_len > 16) {
                f_nround (b1, b0, kp);
                f_nround (b0, b1, kp);
        }
@@ -362,7 +151,7 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, 
const u8 *in)
     i_rn(bo, bi, 1, k);     \
     i_rn(bo, bi, 2, k);     \
     i_rn(bo, bi, 3, k);     \
-    k -= 4
+    k += 4
 
 #define i_lround(bo, bi, k) \
     i_rl(bo, bi, 0, k);     \
@@ -372,17 +161,17 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, 
const u8 *in)
 
 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 {
-       const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+       const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
        const __le32 *src = (const __le32 *)in;
        __le32 *dst = (__le32 *)out;
        u32 b0[4], b1[4];
        const int key_len = ctx->key_length;
-       const u32 *kp = D_KEY + key_len + 20;
+       const u32 *kp = ctx->key_dec + 4;
 
-       b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
-       b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
-       b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
-       b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
+       b0[0] = le32_to_cpu(src[0]) ^ ctx->key_dec[0];
+       b0[1] = le32_to_cpu(src[1]) ^ ctx->key_dec[1];
+       b0[2] = le32_to_cpu(src[2]) ^ ctx->key_dec[2];
+       b0[3] = le32_to_cpu(src[3]) ^ ctx->key_dec[3];
 
        if (key_len > 24) {
                i_nround (b1, b0, kp);
@@ -411,14 +200,13 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, 
const u8 *in)
        dst[3] = cpu_to_le32(b0[3]);
 }
 
-
 static struct crypto_alg aes_alg = {
        .cra_name               =       "aes",
        .cra_driver_name        =       "aes-generic",
        .cra_priority           =       100,
        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
        .cra_blocksize          =       AES_BLOCK_SIZE,
-       .cra_ctxsize            =       sizeof(struct aes_ctx),
+       .cra_ctxsize            =       sizeof(struct crypto_aes_ctx),
        .cra_alignmask          =       3,
        .cra_module             =       THIS_MODULE,
        .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
@@ -426,7 +214,7 @@ static struct crypto_alg aes_alg = {
                .cipher = {
                        .cia_min_keysize        =       AES_MIN_KEY_SIZE,
                        .cia_max_keysize        =       AES_MAX_KEY_SIZE,
-                       .cia_setkey             =       aes_set_key,
+                       .cia_setkey             =       crypto_aes_set_key,
                        .cia_encrypt            =       aes_encrypt,
                        .cia_decrypt            =       aes_decrypt
                }
@@ -435,7 +223,6 @@ static struct crypto_alg aes_alg = {
 
 static int __init aes_init(void)
 {
-       gen_tabs();
        return crypto_register_alg(&aes_alg);
 }
 
-- 
1.5.3.4

-
To unsubscribe from this list: send the line "unsubscribe linux-crypto" in
the body of a message to [EMAIL PROTECTED]
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Reply via email to