Hi Patrick, Is it expected that libstdc++.so grew by 12% from this one patch?
Thanks, -- Maxim Kuvyrkov https://www.linaro.org > On 21 Sep 2021, at 13:01, ci_not...@linaro.org wrote: > > After gcc commit 3c57e692357c79ee7623dfc1586652aee2aefb8f > Author: Patrick Palka <ppa...@redhat.com> > > libstdc++: Add floating-point std::to_chars implementation > > the following hot functions grew in size by more than 10% (but their > benchmarks grew in size by less than 1%): > - 447.dealII:libstdc++.so.6.0.29 grew in size by 12% from 1245370 to 1391240 > bytes > > Below reproducer instructions can be used to re-build both "first_bad" and > "last_good" cross-toolchains used in this bisection. Naturally, the scripts > will fail when triggerring benchmarking jobs if you don't have access to > Linaro TCWG CI. > > For your convenience, we have uploaded tarballs with pre-processed source and > assembly files at: > - First_bad save-temps: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/build-3c57e692357c79ee7623dfc1586652aee2aefb8f/save-temps/ > - Last_good save-temps: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/build-5033506993ef92589373270a8e8dbbf50e3ebef1/save-temps/ > - Baseline save-temps: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/build-baseline/save-temps/ > > Configuration: > - Benchmark: SPEC CPU2006 > - Toolchain: Clang + Glibc + LLVM Linker > - Version: all components were built from their latest release branch > - Target: arm-linux-gnueabihf > - Compiler flags: -Os -mthumb > - Hardware: APM Mustang 8x X-Gene1 > > This benchmarking CI is work-in-progress, and we welcome feedback and > suggestions at linaro-toolchain@lists.linaro.org . In our improvement plans > is to add support for SPEC CPU2017 benchmarks and provide "perf > report/annotate" data behind these reports. > > THIS IS THE END OF INTERESTING STUFF. BELOW ARE LINKS TO BUILDS, > REPRODUCTION INSTRUCTIONS, AND THE RAW COMMIT. > > This commit has regressed these CI configurations: > - tcwg_bmk_llvm_apm/llvm-release-arm-spec2k6-Os > > First_bad build: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/build-3c57e692357c79ee7623dfc1586652aee2aefb8f/ > Last_good build: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/build-5033506993ef92589373270a8e8dbbf50e3ebef1/ > Baseline build: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/build-baseline/ > Even more details: > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/ > > Reproduce builds: > <cut> > mkdir investigate-gcc-3c57e692357c79ee7623dfc1586652aee2aefb8f > cd investigate-gcc-3c57e692357c79ee7623dfc1586652aee2aefb8f > > # Fetch scripts > git clone https://git.linaro.org/toolchain/jenkins-scripts > > # Fetch manifests and test.sh script > mkdir -p artifacts/manifests > curl -o artifacts/manifests/build-baseline.sh > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/manifests/build-baseline.sh > --fail > curl -o artifacts/manifests/build-parameters.sh > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/manifests/build-parameters.sh > --fail > curl -o artifacts/test.sh > https://ci.linaro.org/job/tcwg_bmk_ci_llvm-bisect-tcwg_bmk_apm-llvm-release-arm-spec2k6-Os/10/artifact/artifacts/test.sh > --fail > chmod +x artifacts/test.sh > > # Reproduce the baseline build (build all pre-requisites) > ./jenkins-scripts/tcwg_bmk-build.sh @@ artifacts/manifests/build-baseline.sh > > # Save baseline build state (which is then restored in artifacts/test.sh) > mkdir -p ./bisect > rsync -a --del --delete-excluded --exclude /bisect/ --exclude /artifacts/ > --exclude /gcc/ ./ ./bisect/baseline/ > > cd gcc > > # Reproduce first_bad build > git checkout --detach 3c57e692357c79ee7623dfc1586652aee2aefb8f > ../artifacts/test.sh > > # Reproduce last_good build > git checkout --detach 5033506993ef92589373270a8e8dbbf50e3ebef1 > ../artifacts/test.sh > > cd .. > </cut> > > Full commit (up to 1000 lines): > <cut> > commit 3c57e692357c79ee7623dfc1586652aee2aefb8f > Author: Patrick Palka <ppa...@redhat.com> > Date: Thu Dec 17 23:11:34 2020 -0500 > > libstdc++: Add floating-point std::to_chars implementation > > This implements the floating-point std::to_chars overloads for float, > double and long double. We use the Ryu library to compute the shortest > round-trippable fixed and scientific forms for float, double and long > double. We also use Ryu for performing explicit-precision fixed and > scientific formatting for float and double. For explicit-precision > formatting for long double we fall back to using printf. Hexadecimal > formatting for float, double and long double is implemented from > scratch. > > The supported long double binary formats are binary64, binary80 (x86 > 80-bit extended precision), binary128 and ibm128. > > Much of the complexity of the implementation is in computing the exact > output length before handing it off to Ryu (which doesn't do bounds > checking). In some cases it's hard to compute the output length > beforehand, so in these cases we instead compute an upper bound on the > output length and use a sufficiently-sized intermediate buffer only if > necessary. > > Another source of complexity is in the general-with-precision formatting > mode, where we need to do zero-trimming of the string returned by Ryu, > and where we also take care to avoid having to format the number through > Ryu a second time when the general formatting mode resolves to fixed > (which we determine by doing a scientific formatting first and > inspecting the scientific exponent). We avoid going through Ryu twice > by instead transforming the scientific form to the corresponding fixed > form via in-place string manipulation. > > This implementation is non-conforming in a couple of ways: > > 1. For the shortest hexadecimal formatting, we currently follow the > Microsoft implementation's decision to be consistent with the > output of printf's '%a' specifier at the expense of sometimes not > printing the shortest representation. For example, the shortest hex > form for the number 1.08p+0 is 2.1p-1, but we output the former > instead of the latter, as does printf. > > 2. The Ryu routine generic_binary_to_decimal that we use for performing > shortest formatting for large floating point types is implemented > using the __int128 type, but some targets with a large long double > type lack __int128 (e.g. i686), so we can't perform shortest > formatting of long double on such targets through Ryu. As a > temporary stopgap this patch makes the long double to_chars overloads > just dispatch to the double overloads on these targets, which means > we lose precision in the output. (We could potentially fix this by > writing a specialized version of Ryu's generic_binary_to_decimal > routine that uses uint64_t instead of __int128.) [Though I wonder if > there's a better way to work around the lack of __int128 on i686 > specifically?] > > 3. Our shortest formatting for __ibm128 doesn't guarantee the round-trip > property if the difference between the high- and low-order exponent > is large. This is because we treat __ibm128 as if it has a > contiguous 105-bit mantissa by merging the mantissas of the high- > and low-order parts (using code extracted from glibc), so we > potentially lose precision from the low-order part. This seems to be > consistent with how glibc printf formats __ibm128. > > libstdc++-v3/ChangeLog: > > * config/abi/pre/gnu.ver: Add new exports. > * include/std/charconv (to_chars): Declare the floating-point > overloads for float, double and long double. > * src/c++17/Makefile.am (sources): Add floating_to_chars.cc. > * src/c++17/Makefile.in: Regenerate. > * src/c++17/floating_to_chars.cc: New file. > (to_chars): Define for float, double and long double. > * testsuite/20_util/to_chars/long_double.cc: New test. > --- > libstdc++-v3/config/abi/pre/gnu.ver | 7 + > libstdc++-v3/include/std/charconv | 24 + > libstdc++-v3/src/c++17/Makefile.am | 1 + > libstdc++-v3/src/c++17/Makefile.in | 3 +- > libstdc++-v3/src/c++17/floating_to_chars.cc | 1563 ++++++++++++++++++++ > .../testsuite/20_util/to_chars/long_double.cc | 199 +++ > 6 files changed, 1796 insertions(+), 1 deletion(-) > > diff --git a/libstdc++-v3/config/abi/pre/gnu.ver > b/libstdc++-v3/config/abi/pre/gnu.ver > index 4b4bd8ab6da..05e0a512247 100644 > --- a/libstdc++-v3/config/abi/pre/gnu.ver > +++ b/libstdc++-v3/config/abi/pre/gnu.ver > @@ -2393,6 +2393,13 @@ GLIBCXX_3.4.29 { > # std::once_flag::_M_finish(bool) > _ZNSt9once_flag9_M_finishEb; > > + # std::to_chars(char*, char*, [float|double|long double]) > + _ZSt8to_charsPcS_[defg]; > + # std::to_chars(char*, char*, [float|double|long double], chars_format) > + _ZSt8to_charsPcS_[defg]St12chars_format; > + # std::to_chars(char*, char*, [float|double|long double], chars_format, > int) > + _ZSt8to_charsPcS_[defg]St12chars_formati; > + > } GLIBCXX_3.4.28; > > # Symbols in the support library (libsupc++) have their own tag. > diff --git a/libstdc++-v3/include/std/charconv > b/libstdc++-v3/include/std/charconv > index dd1ebdf8322..b57b0a16db2 100644 > --- a/libstdc++-v3/include/std/charconv > +++ b/libstdc++-v3/include/std/charconv > @@ -702,6 +702,30 @@ namespace __detail > chars_format __fmt = chars_format::general) noexcept; > #endif > > + // Floating-point std::to_chars > + > + // Overloads for float. > + to_chars_result to_chars(char* __first, char* __last, float __value) > noexcept; > + to_chars_result to_chars(char* __first, char* __last, float __value, > + chars_format __fmt) noexcept; > + to_chars_result to_chars(char* __first, char* __last, float __value, > + chars_format __fmt, int __precision) noexcept; > + > + // Overloads for double. > + to_chars_result to_chars(char* __first, char* __last, double __value) > noexcept; > + to_chars_result to_chars(char* __first, char* __last, double __value, > + chars_format __fmt) noexcept; > + to_chars_result to_chars(char* __first, char* __last, double __value, > + chars_format __fmt, int __precision) noexcept; > + > + // Overloads for long double. > + to_chars_result to_chars(char* __first, char* __last, long double __value) > + noexcept; > + to_chars_result to_chars(char* __first, char* __last, long double __value, > + chars_format __fmt) noexcept; > + to_chars_result to_chars(char* __first, char* __last, long double __value, > + chars_format __fmt, int __precision) noexcept; > + > _GLIBCXX_END_NAMESPACE_VERSION > } // namespace std > #endif // C++14 > diff --git a/libstdc++-v3/src/c++17/Makefile.am > b/libstdc++-v3/src/c++17/Makefile.am > index 37cdb53c076..2ec5ed621ca 100644 > --- a/libstdc++-v3/src/c++17/Makefile.am > +++ b/libstdc++-v3/src/c++17/Makefile.am > @@ -51,6 +51,7 @@ endif > > sources = \ > floating_from_chars.cc \ > + floating_to_chars.cc \ > fs_dir.cc \ > fs_ops.cc \ > fs_path.cc \ > diff --git a/libstdc++-v3/src/c++17/Makefile.in > b/libstdc++-v3/src/c++17/Makefile.in > index ccae721ab3f..9b36b7a916c 100644 > --- a/libstdc++-v3/src/c++17/Makefile.in > +++ b/libstdc++-v3/src/c++17/Makefile.in > @@ -124,7 +124,7 @@ LTLIBRARIES = $(noinst_LTLIBRARIES) > libc__17convenience_la_LIBADD = > @ENABLE_DUAL_ABI_TRUE@am__objects_1 = cow-fs_dir.lo cow-fs_ops.lo \ > @ENABLE_DUAL_ABI_TRUE@ cow-fs_path.lo > -am__objects_2 = floating_from_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ > +am__objects_2 = floating_from_chars.lo floating_to_chars.lo fs_dir.lo > fs_ops.lo fs_path.lo \ > memory_resource.lo $(am__objects_1) > @ENABLE_DUAL_ABI_TRUE@am__objects_3 = cow-string-inst.lo > @ENABLE_EXTERN_TEMPLATE_TRUE@am__objects_4 = ostream-inst.lo \ > @@ -440,6 +440,7 @@ headers = > > sources = \ > floating_from_chars.cc \ > + floating_to_chars.cc \ > fs_dir.cc \ > fs_ops.cc \ > fs_path.cc \ > diff --git a/libstdc++-v3/src/c++17/floating_to_chars.cc > b/libstdc++-v3/src/c++17/floating_to_chars.cc > new file mode 100644 > index 00000000000..dd83f5eea93 > --- /dev/null > +++ b/libstdc++-v3/src/c++17/floating_to_chars.cc > @@ -0,0 +1,1563 @@ > +// std::to_chars implementation for floating-point types -*- C++ -*- > + > +// Copyright (C) 2020 Free Software Foundation, Inc. > +// > +// This file is part of the GNU ISO C++ Library. This library is free > +// software; you can redistribute it and/or modify it under the > +// terms of the GNU General Public License as published by the > +// Free Software Foundation; either version 3, or (at your option) > +// any later version. > + > +// This library is distributed in the hope that it will be useful, > +// but WITHOUT ANY WARRANTY; without even the implied warranty of > +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > +// GNU General Public License for more details. > + > +// Under Section 7 of GPL version 3, you are granted additional > +// permissions described in the GCC Runtime Library Exception, version > +// 3.1, as published by the Free Software Foundation. > + > +// You should have received a copy of the GNU General Public License and > +// a copy of the GCC Runtime Library Exception along with this program; > +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see > +// <http://www.gnu.org/licenses/>. > + > +// Activate __glibcxx_assert within this file to shake out any bugs. > +#define _GLIBCXX_ASSERTIONS 1 > + > +#include <charconv> > + > +#include <bit> > +#include <cfenv> > +#include <cassert> > +#include <cmath> > +#include <cstdio> > +#include <cstring> > +#include <langinfo.h> > +#include <optional> > +#include <string_view> > +#include <type_traits> > + > +// Determine the binary format of 'long double'. > + > +// We support the binary64, float80 (i.e. x86 80-bit extended precision), > +// binary128, and ibm128 formats. > +#define LDK_UNSUPPORTED 0 > +#define LDK_BINARY64 1 > +#define LDK_FLOAT80 2 > +#define LDK_BINARY128 3 > +#define LDK_IBM128 4 > + > +#if __LDBL_MANT_DIG__ == __DBL_MANT_DIG__ > +# define LONG_DOUBLE_KIND LDK_BINARY64 > +#elif defined(__SIZEOF_INT128__) > +// The Ryu routines need a 128-bit integer type in order to do shortest > +// formatting of types larger than 64-bit double, so without __int128 we > can't > +// support any large long double format. This is the case for e.g. i386. > +# if __LDBL_MANT_DIG__ == 64 > +# define LONG_DOUBLE_KIND LDK_FLOAT80 > +# elif __LDBL_MANT_DIG__ == 113 > +# define LONG_DOUBLE_KIND LDK_BINARY128 > +# elif __LDBL_MANT_DIG__ == 106 > +# define LONG_DOUBLE_KIND LDK_IBM128 > +# endif > +#endif > +#if !defined(LONG_DOUBLE_KIND) > +# define LONG_DOUBLE_KIND LDK_UNSUPPORTED > +#endif > + > +namespace > +{ > + namespace ryu > + { > +#include "ryu/common.h" > +#include "ryu/digit_table.h" > +#include "ryu/d2s_intrinsics.h" > +#include "ryu/d2s_full_table.h" > +#include "ryu/d2fixed_full_table.h" > +#include "ryu/f2s_intrinsics.h" > +#include "ryu/d2s.c" > +#include "ryu/d2fixed.c" > +#include "ryu/f2s.c" > + > +#ifdef __SIZEOF_INT128__ > + namespace generic128 > + { > + // Put the generic Ryu bits in their own namespace to avoid name > conflicts. > +# include "ryu/generic_128.h" > +# include "ryu/ryu_generic_128.h" > +# include "ryu/generic_128.c" > + } // namespace generic128 > + > + using generic128::floating_decimal_128; > + using generic128::generic_binary_to_decimal; > + > + int > + to_chars(const floating_decimal_128 v, char* const result) > + { return generic128::generic_to_chars(v, result); } > +#endif > + } // namespace ryu > + > + // A traits class that contains pertinent information about the binary > + // format of each of the floating-point types we support. > + template<typename T> > + struct floating_type_traits > + { }; > + > + template<> > + struct floating_type_traits<float> > + { > + // We (and Ryu) assume float has the IEEE binary32 format. > + static_assert(__FLT_MANT_DIG__ == 24); > + static constexpr int mantissa_bits = 23; > + static constexpr int exponent_bits = 8; > + static constexpr bool has_implicit_leading_bit = true; > + using mantissa_t = uint32_t; > + using shortest_scientific_t = ryu::floating_decimal_32; > + > + static constexpr uint64_t pow10_adjustment_tab[] > + = { 0b0000000000011101011100110101100101101110000000000000000000000000 > }; > + }; > + > + template<> > + struct floating_type_traits<double> > + { > + // We (and Ryu) assume double has the IEEE binary64 format. > + static_assert(__DBL_MANT_DIG__ == 53); > + static constexpr int mantissa_bits = 52; > + static constexpr int exponent_bits = 11; > + static constexpr bool has_implicit_leading_bit = true; > + using mantissa_t = uint64_t; > + using shortest_scientific_t = ryu::floating_decimal_64; > + > + static constexpr uint64_t pow10_adjustment_tab[] > + = { 0b0000000000000000000000011000110101110111000001100101110000111100, > + 0b0111100011110101011000011110000000110110010101011000001110011111, > + 0b0101101100000000011100100100111100110110110100010001010101110000, > + 0b0011110010111000101111110101100011101100010001010000000101100111, > + 0b0001010000011001011100100001010000010101101000001101000000000000 > }; > + }; > + > +#if LONG_DOUBLE_KIND == LDK_BINARY64 > + // When long double is equivalent to double, we just forward the long > double > + // overloads to the double overloads, so we don't need to define a a > + // floating_type_traits<long double> specialization in this case. > +#elif LONG_DOUBLE_KIND == LDK_FLOAT80 > + template<> > + struct floating_type_traits<long double> > + { > + static constexpr int mantissa_bits = 64; > + static constexpr int exponent_bits = 15; > + static constexpr bool has_implicit_leading_bit = false; > + using mantissa_t = uint64_t; > + using shortest_scientific_t = ryu::floating_decimal_128; > + > + static constexpr uint64_t pow10_adjustment_tab[] > + = { 0b0000000000000000000000000000110101011111110100010100110000011101, > + 0b1001100101001111010011011111101000101111110001011001011101110000, > + 0b0000101111111011110010001000001010111101011110111111010100011001, > + 0b0011100000011111001101101011111001111100100010000101001111101001, > + 0b0100100100000000100111010010101110011000110001101101110011001010, > + 0b0111100111100010100000010011000010010110101111110101000011110100, > + 0b1010100111100010011110000011011101101100010110000110101010101010, > + 0b0000001111001111000000101100111011011000101000110011101100110010, > + 0b0111000011100100101101010100001101111110101111001000010011111111, > + 0b0010111000100110100100100010101100111010110001101010010111001000, > + 0b0000100000010110000011001001000111000001111010100101101000001111, > + 0b0010101011101000111100001011000010011101000101010010010000101111, > + 0b1011111011101101110010101011010001111000101000101101011001100011, > + 0b1010111011011011110111110011001010000010011001110100101101000101, > + 0b0011000001110110011010010000011100100011001011001100001101010110, > + 0b0100011111011000111111101000011110000010111110101001000000001001, > + 0b1110000001110001001101101110011000100000001010000111100010111010, > + 0b1110001001010011101000111000001000010100110000010110100011110000, > + 0b0000011010110000110001111000011111000011001101001101001001000110, > + 0b1010010111001000101001100101010110100100100010010010000101000010, > + 0b1011001110000111100010100110000011100011111001110111001100000101, > + 0b0110101001001000010110001000010001010101110101100001111100011001, > + 0b1111100011110101011110011010101001010010100011000010110001101001, > + 0b0100000100001000111101011100010011011111011001000000001100011000, > + 0b1110111111000111100101110111110000000011001110011100011011011001, > + 0b1100001100100000010001100011011000111011110000110011010101000011, > + 0b1111111011100111011101001111111000010000001111010111110010000100, > + 0b1110111001111110101111000101000000001010001110011010001000111010, > + 0b1000010001011000101111111010110011111101110101101001111000111010, > + 0b0100000111101001000111011001101000001010111011101001101111000100, > + 0b0000011100110001000111011100111100110001101111111010110111100000, > + 0b0000011101011100100110010011110101010100010011110010010111010000, > + 0b0011011001100111110101111100001001101110101101001110110011110110, > + 0b1011000101000001110100111001100100111100110011110000000001101000, > + 0b1011100011110100001001110101010110111001000000001011101001011110, > + 0b1111001010010010100000010110101010101011101000101000000000001100, > + 0b1000001111100100111001110101100001010011111111000001000011110000, > + 0b0001011101001000010000101101111000001110101100110011001100110111, > + 0b1110011100000010101011011111001010111101111110100000011100000011, > + 0b1001110110011100101010011110100010110001001110110000101011100110, > + 0b1001101000100011100111010000011011100001000000110101100100001001, > + 0b1010111000101000101101010111000010001100001010100011111100000100, > + 0b0111101000100011000101101011111011100010001101110111001111001011, > + 0b1110100111010110001110110110000000010110100011110000010001111100, > + 0b1100010100011010001011001000111001010101011110100101011001000000, > + 0b0000110001111001100110010110111010101101001101000000000010010101, > + 0b0001110111101000001111101010110010010000111110111100000111110100, > + 0b0111110111001001111000110001101101001010101110110101111110000100, > + 0b0000111110111010101111100010111010011100010110011011011001000001, > + 0b1010010100100100101110111111111000101100000010111111101101000110, > + 0b1000100111111101100011001101000110001000000100010101010100001101, > + 0b1100101010101000111100101100001000110001110010100000000010110101, > + 0b1010000100111101100100101010010110100010000000110101101110000100, > + 0b1011111011110001110000100100000000001010111010001101100000100100, > + 0b0111101101100011001110011100000001000101101101111000100111011111, > + 0b0100111010010011011001010011110100001100111010010101111111100011, > + 0b0010001001011000111000001100110111110111110010100011000110110110, > + 0b0101010110000000010000100000110100111011111101000100000111010010, > + 0b0110000011011101000001010100110101101110011100110101000000001001, > + 0b1101100110100000011000001111000100100100110001100110101010101100, > + 0b0010100101010110010010001010101000011111111111001011001010001111, > + 0b0111001010001111001100111001010101001000110101000011110000001000, > + 0b0110010011001001001111110001010010001011010010001101110110110011, > + 0b0110010100111011000100111000001001101011111001110010111110111111, > + 0b0101110111001001101100110100101001110010101110011001101110001000, > + 0b0100110101010111011010001100010111100011010011111001010100111000, > + 0b0111000110110111011110100100010111000110000110110110110001111110, > + 0b1000101101010100100100111110100011110110110010011001110011110101, > + 0b1001101110101001010100111101101011000101000010110101101111110000, > + 0b0100100101001011011001001011000010001101001010010001010110101000, > + 0b0010100001001011100110101000010110000111000111000011100101011011, > + 0b0110111000011001111101101011111010001000000010101000101010011110, > + 0b1000110110100001111011000001111100001001000000010110010100100100, > + 0b1001110100011111100111101011010000010101011100101000010010100110, > + 0b0001010110101110100010101010001110110110100011101010001001111100, > + 0b1010100101101100000010110011100110100010010000100100001110000100, > + 0b0001000000010000001010000010100110000001110100111001110111101101, > + 0b1100000000000000000000000000000000000000000000000000000000000000 > }; > + }; > +#elif LONG_DOUBLE_KIND == LDK_BINARY128 > + template<> > + struct floating_type_traits<long double> > + { > + static constexpr int mantissa_bits = 112; > + static constexpr int exponent_bits = 15; > + static constexpr bool has_implicit_leading_bit = true; > + using mantissa_t = unsigned __int128; > + using shortest_scientific_t = ryu::floating_decimal_128; > + > + static constexpr uint64_t pow10_adjustment_tab[] > + = { 0b0000000000000000000000000000000000000000000000000100000010000000, > + 0b1011001111110100000100010101101110011100100110000110010110011000, > + 0b1010100010001101111111000000001101010010100010010000111011110111, > + 0b1011111001110001111000011111000010110111000111110100101010100101, > + 0b0110100110011110011011000011000010011001110001001001010011100011, > + 0b0000011111110010101111101011101010000110011111100111001110100111, > + 0b0100010101010110000010111011110100000010011001001010001110111101, > + 0b1101110111000010001101100000110100000111001001101011000101011011, > + 0b0100111011101101010000001101011000101100101110010010110000101011, > + 0b0100000110111000000110101000010011101000110100010110000011101101, > + 0b1011001101001000100001010001100100001111011101010101110001010110, > + 0b1000000001000000101001110010110010001111101101010101001100000110, > + 0b0101110110100110000110000001001010111110001110010000111111010011, > + 0b1010001111100111000100011100100100111100100101000001011001000111, > + 0b1010011000011100110101100111001011100101111111100001110100000100, > + 0b1100011100100010100000110001001010000000100000001001010111011101, > + 0b0101110000100011001111101101000000100110000010010111010001111010, > + 0b0100111100011010110111101000100110000111001001101100000001111100, > + 0b1100100100111110101011000100000101011010110111000111110100110101, > + 0b0110010000010111010100110011000000111010000010111011010110000100, > + 0b0101001001010010110111010111000101011100000111100111000001110010, > + 0b1101111111001011101010110001000111011010111101001011010110100100, > + 0b0001000100110000011111101011001101110010110110010000000011100100, > + 0b0001000000000101001001001000000000011000100011001110101001001110, > + 0b0010010010001000111010011011100001000110011011011110110100111000, > + 0b0000100110101100000111100010100100011100110111011100001111001100, > + 0b1011111010001110001100000011110111111111100000001011111111101100, > + 0b0000011100001111010101110000100110111100101101110111101001000001, > + 0b1100010001110110111100001001001101101000011100000010110101001011, > + 0b0100101001101011111001011110101101100011011111011100101010101111, > + 0b0001101001111001110000101101101100001011010001011110011101000010, > + 0b1111000000101001101111011010110011101110100001011011001011100010, > + 0b0101001010111101101100001111100010010110001101001000001101100100, > + 0b0101100101011110001100101011111000111001111001001001101101100001, > + 0b1111001101010010100100011011000110110010001111000111010001001101, > + 0b0001110010011000000001000110110111011000011100001000011001110111, > + 0b0100001011011011011011110011101100100101111111101100101000001110, > + 0b0101011110111101010111100111101111000101111111111110100011011010, > + 0b1110101010001001110100000010110111010111111010111110100110010110, > + 0b1010001111100001001100101000110100001100011100110010000011010111, > + 0b1111111101101111000100111100000101011000001110011011101010111001, > + 0b1111101100001110100101111101011001000100000101110000110010100011, > + 0b1001010110110101101101000101010001010000101011011111010011010000, > + 0b0111001110110011101001100111000001000100001010110000010000001101, > + 0b0101111100111110100111011001111001111011011110010111010011101010, > + 0b1110111000000001100100111001100100110001011011001110101111110111, > + 0b0001010001001101010111101010011111000011110001101101011001111111, > + 0b0101000011100011010010001101100001011101011010100110101100100010, > + 0b0001000101011000100101111100110110000101101101111000110001001011, > + 0b0101100101001011011000010101000000010100011100101101000010011111, > + 0b1000010010001011101001011010100010111011110100110011011000100111, > + 0b1000011011100001010111010111010011101100100010010010100100101001, > + 0b1001001001010111110101000010111010000000101111010100001010010010, > + 0b0011011110110010010101111011000001000000000011011111000011111011, > + 0b1011000110100011001110000001000100000001011100010111010010011110, > + 0b0111101110110101110111110000011000000100011100011000101101101110, > + 0b1001100101111011011100011110101011001111100111101010101010110111, > + 0b1100110010010001100011001111010000000100011101001111011101001111, > + 0b1000111001111010100101000010000100000001001100101010001011001101, > + 0b0011101011110000110010100101010100110010100001000010101011111101, > + 0b1100000000000110000010101011000000011101000110011111100010111111, > + 0b0010100110000011011100010110111100010110101100110011101110001101, > + 0b0010111101010011111000111001111100110111111100100011110001101110, > + 0b1001110111001001101001001001011000010100110001000000100011010110, > + 0b0011110101100111011011111100001000011001010100111100100101111010, > + 0b0010001101000011000010100101110000010101101000100110000100001010, > + 0b0010000010100110010101100101110011101111000111111111001001100001, > + 0b0100111111011011011011100111111011000010011101101111011111110110, > + 0b1111111111010110101011101000100101110100001110001001101011100111, > + 0b1011111101000101110000111100100010111010100001010000010010110010, > + 0b1111010101001011101011101010000100110110001110111100100110111111, > + 0b1011001101000001001101000010101010010110010001100001011100011010, > + 0b0101001011011101010001110100010000010001111100100100100001001101, > + 0b0010100000111001100011000101100101000001111100111001101000000010, > + 0b1011001111010101011001000100100110100100110111110100000110111000, > + 0b0101011111010011100011010010111101110010100001111111100010001001, > + 0b0010111011101100100000000000001111111010011101100111100001001101, > + 0b1101000000000000000000000000000000000000000000000000000000000000 > }; > + }; > +#elif LONG_DOUBLE_KIND == LDK_IBM128 > + template<> > + struct floating_type_traits<long double> > + { > + static constexpr int mantissa_bits = 105; > + static constexpr int exponent_bits = 11; > + static constexpr bool has_implicit_leading_bit = true; > + using mantissa_t = unsigned __int128; > + using shortest_scientific_t = ryu::floating_decimal_128; > + > + static constexpr uint64_t pow10_adjustment_tab[] > + = { 0b0000000000000000000000000000000000000000000000001000000100000000, > + 0b0000000000000000000100000000000000000000001000000000000000000010, > + 0b0000100000000000000000001001000000000000000001100100000000000000, > + 0b0011000000000000000000000000000001110000010000000000000000000000, > + 0b0000100000000000001000000000000000000000000000100000000000000000 > }; > + }; > +#endif > + > + // An IEEE-style decomposition of a floating-point value of type T. > + template<typename T> > + struct ieee_t > + { > + typename floating_type_traits<T>::mantissa_t mantissa; > + uint32_t biased_exponent; > + bool sign; > + }; > + > + // Decompose the floating-point value into its IEEE components. > + template<typename T> > + ieee_t<T> > + get_ieee_repr(const T value) > + { > + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; > + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; > + constexpr int total_bits = mantissa_bits + exponent_bits + 1; > + > + constexpr auto get_uint_t = [] { > + if constexpr (total_bits <= 32) > + return uint32_t{}; > + else if constexpr (total_bits <= 64) > + return uint64_t{}; > +#ifdef __SIZEOF_INT128__ > + else if constexpr (total_bits <= 128) > + return (unsigned __int128){}; > +#endif > + }; > + using uint_t = decltype(get_uint_t()); > + uint_t value_bits = 0; > + memcpy(&value_bits, &value, sizeof(value)); > + > + ieee_t<T> ieee_repr; > + ieee_repr.mantissa = value_bits & ((uint_t{1} << mantissa_bits) - 1u); > + ieee_repr.biased_exponent > + = (value_bits >> mantissa_bits) & ((uint_t{1} << exponent_bits) - 1u); > + ieee_repr.sign = (value_bits >> (mantissa_bits + exponent_bits)) & 1; > + return ieee_repr; > + } > + > +#if LONG_DOUBLE_KIND == LDK_IBM128 > + template<> > + ieee_t<long double> > + get_ieee_repr(const long double value) > + { > + // The layout of __ibm128 isn't compatible with the standard IEEE > format. > + // So we transform it into an IEEE-compatible format, suitable for > + // consumption by the generic Ryu API, with an 11-bit exponent and > 105-bit > + // mantissa (plus an implicit leading bit). We use the exponent and > sign > + // of the high part, and we merge the mantissa of the high part with > the > + // mantissa (and the implicit leading bit) of the low part. > + using uint_t = unsigned __int128; > + uint_t value_bits = 0; > + memcpy(&value_bits, &value, sizeof(value_bits)); > + > + const uint64_t value_hi = value_bits; > + const uint64_t value_lo = value_bits >> 64; > + > + uint64_t mantissa_hi = value_hi & ((1ull << 52) - 1); > + unsigned exponent_hi = (value_hi >> 52) & ((1ull << 11) - 1); > + const int sign_hi = (value_hi >> 63) & 1; > + > + uint64_t mantissa_lo = value_lo & ((1ull << 52) - 1); > + const unsigned exponent_lo = (value_lo >> 52) & ((1ull << 11) - 1); > + const int sign_lo = (value_lo >> 63) & 1; > + > + { > + // The following code for adjusting the low-part mantissa to combine > + // it with the high-part mantissa is taken from the glibc source file > + // sysdeps/ieee754/ldbl-128ibm/printf_fphex.c. > + mantissa_lo <<= 7; > + if (exponent_lo != 0) > + mantissa_lo |= (1ull << (52 + 7)); > + else > + mantissa_lo <<= 1; > + > + const int ediff = exponent_hi - exponent_lo - 53; > + if (ediff > 63) > + mantissa_lo = 0; > + else if (ediff > 0) > + mantissa_lo >>= ediff; > + else if (ediff < 0) > + mantissa_lo <<= -ediff; > + > + if (sign_lo != sign_hi && mantissa_lo != 0) > + { > + mantissa_lo = (1ull << 60) - mantissa_lo; > + if (mantissa_hi == 0) > + { > + mantissa_hi = 0xffffffffffffeLL | (mantissa_lo >> 59); > + mantissa_lo = 0xfffffffffffffffLL & (mantissa_lo << 1); > + exponent_hi--; > + } > + else > + mantissa_hi--; > + } > + } > + > + ieee_t<long double> ieee_repr; > + ieee_repr.mantissa = ((uint_t{mantissa_hi} << 64) > + | (uint_t{mantissa_lo} << 4)) >> 11; > + ieee_repr.biased_exponent = exponent_hi; > + ieee_repr.sign = sign_hi; > + return ieee_repr; > + } > +#endif > + > + // Invoke Ryu to obtain the shortest scientific form for the given > + // floating-point number. > + template<typename T> > + typename floating_type_traits<T>::shortest_scientific_t > + floating_to_shortest_scientific(const T value) > + { > + if constexpr (std::is_same_v<T, float>) > + return ryu::floating_to_fd32(value); > + else if constexpr (std::is_same_v<T, double>) > + return ryu::floating_to_fd64(value); > +#ifdef __SIZEOF_INT128__ > + else if constexpr (std::is_same_v<T, long double>) > + { > + constexpr int mantissa_bits > + = floating_type_traits<T>::mantissa_bits; > + constexpr int exponent_bits > + = floating_type_traits<T>::exponent_bits; > + constexpr bool has_implicit_leading_bit > + = floating_type_traits<T>::has_implicit_leading_bit; > + > + const auto [mantissa, exponent, sign] = get_ieee_repr(value); > + return ryu::generic_binary_to_decimal(mantissa, exponent, sign, > + mantissa_bits, exponent_bits, > + !has_implicit_leading_bit); > + } > +#endif > + } > + > + // This subroutine returns true if the shortest scientific form fd is a > + // positive power of 10, and the floating-point number that has this > shortest > + // scientific form is smaller than this power of 10. > + // > + // For instance, the exactly-representable 64-bit number > + // 99999999999999991611392.0 has the shortest scientific form 1e23, so its > + // exact value is smaller than its shortest scientific form. > + // > + // For these powers of 10 the length of the fixed form is one digit less > + // than what the scientific exponent suggests. > + // > + // This subroutine inspects a lookup table to detect when fd is such a > + // "rounded up" power of 10. > + template<typename T> > + bool > + is_rounded_up_pow10_p(const typename > + floating_type_traits<T>::shortest_scientific_t fd) > + { > + if (fd.exponent < 0 || fd.mantissa != 1) [[likely]] > + return false; > + > + constexpr auto& pow10_adjustment_tab > + = floating_type_traits<T>::pow10_adjustment_tab; > + __glibcxx_assert(fd.exponent/64 < > (int)std::size(pow10_adjustment_tab)); > + return (pow10_adjustment_tab[fd.exponent/64] > + & (1ull << (63 - fd.exponent%64))); > + } > + > + int > + get_mantissa_length(const ryu::floating_decimal_32 fd) > + { return ryu::decimalLength9(fd.mantissa); } > + > + int > + get_mantissa_length(const ryu::floating_decimal_64 fd) > + { return ryu::decimalLength17(fd.mantissa); } > + > +#ifdef __SIZEOF_INT128__ > + int > + get_mantissa_length(const ryu::floating_decimal_128 fd) > + { return ryu::generic128::decimalLength(fd.mantissa); } > +#endif > +} // anon namespace > + > +namespace std _GLIBCXX_VISIBILITY(default) > +{ > +_GLIBCXX_BEGIN_NAMESPACE_VERSION > + > +// This subroutine of __floating_to_chars_* handles writing nan, inf and 0 in > +// all formatting modes. > +template<typename T> > + static optional<to_chars_result> > + __handle_special_value(char* first, char* const last, const T value, > + const chars_format fmt, const int precision) > + { > + __glibcxx_assert(precision >= 0); > + > + string_view str; > + switch (__builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, > FP_SUBNORMAL, > + FP_ZERO, value)) > + { > + case FP_INFINITE: > + str = "-inf"; > + break; > + > + case FP_NAN: > + str = "-nan"; > + break; > + > + case FP_ZERO: > + break; > + > + default: > + case FP_SUBNORMAL: > + case FP_NORMAL: [[likely]] > + return nullopt; > + } > + > + if (!str.empty()) > + { > + // We're formatting +-inf or +-nan. > + if (!__builtin_signbit(value)) > + str.remove_prefix(strlen("-")); > + > + if (last - first < (int)str.length()) > + return {{last, errc::value_too_large}}; > + > + memcpy(first, &str[0], str.length()); > + first += str.length(); > + return {{first, errc{}}}; > + } > + > + // We're formatting 0. > + __glibcxx_assert(value == 0); > + const auto orig_first = first; > + const bool sign = __builtin_signbit(value); > + int expected_output_length; > + switch (fmt) > + { > + case chars_format::fixed: > + case chars_format::scientific: > + case chars_format::hex: > + expected_output_length = sign + 1; > + if (precision) > + expected_output_length += strlen(".") + precision; > + if (fmt == chars_format::scientific) > + expected_output_length += strlen("e+00"); > + else if (fmt == chars_format::hex) > + expected_output_length += strlen("p+0"); > + if (last - first < expected_output_length) > + return {{last, errc::value_too_large}}; > + > + if (sign) > + *first++ = '-'; > + *first++ = '0'; > + if (precision) > + { > + *first++ = '.'; > + memset(first, '0', precision); > + first += precision; > + } > + if (fmt == chars_format::scientific) > + { > + memcpy(first, "e+00", 4); > + first += 4; > + } > + else if (fmt == chars_format::hex) > + { > + memcpy(first, "p+0", 3); > + first += 3; > + } > + break; > + > + case chars_format::general: > + default: // case chars_format{}: > + expected_output_length = sign + 1; > + if (last - first < expected_output_length) > + return {{last, errc::value_too_large}}; > + > + if (sign) > + *first++ = '-'; > + *first++ = '0'; > + break; > + } > + __glibcxx_assert(first - orig_first == expected_output_length); > + return {{first, errc{}}}; > + } > + > +// This subroutine of the floating-point to_chars overloads performs > +// hexadecimal formatting. > +template<typename T> > + static to_chars_result > + __floating_to_chars_hex(char* first, char* const last, const T value, > + const optional<int> precision) > + { > + if (precision.has_value() && precision.value() < 0) [[unlikely]] > + // A negative precision argument is treated as if it were omitted. > + return __floating_to_chars_hex(first, last, value, nullopt); > + > + __glibcxx_requires_valid_range(first, last); > + > + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; > + constexpr bool has_implicit_leading_bit > + = floating_type_traits<T>::has_implicit_leading_bit; > + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; > + constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1; > + using mantissa_t = typename floating_type_traits<T>::mantissa_t; > + constexpr int mantissa_t_width = sizeof(mantissa_t) * __CHAR_BIT__; > + > + if (auto result = __handle_special_value(first, last, value, > + chars_format::hex, > + precision.value_or(0))) > + return *result; > + > + // Extract the sign, mantissa and exponent from the value. > + const auto [ieee_mantissa, biased_exponent, sign] = get_ieee_repr(value); > + const bool is_normal_number = (biased_exponent != 0); > + > + // Calculate the unbiased exponent. > + const int32_t unbiased_exponent = (is_normal_number > + ? biased_exponent - exponent_bias > + : 1 - exponent_bias); > + > + // Shift the mantissa so that its bitwidth is a multiple of 4. > + constexpr unsigned rounded_mantissa_bits = (mantissa_bits + 3) / 4 * 4; > + static_assert(mantissa_t_width >= rounded_mantissa_bits); > + mantissa_t effective_mantissa > + = ieee_mantissa << (rounded_mantissa_bits - mantissa_bits); > + if (is_normal_number) > + { > + if constexpr (has_implicit_leading_bit) > + // Restore the mantissa's implicit leading bit. > + effective_mantissa |= mantissa_t{1} << rounded_mantissa_bits; > + else > + // The explicit mantissa bit should already be set. > + __glibcxx_assert(effective_mantissa & (mantissa_t{1} << (mantissa_bits > + - 1u))); > + } > + > + // Compute the shortest precision needed to print this value exactly, > + // disregarding trailing zeros. > + constexpr int full_hex_precision = (has_implicit_leading_bit > + ? (mantissa_bits + 3) / 4 > + // With an explicit leading bit, we > + // use the four leading nibbles as the > + // hexit before the decimal point. > + : (mantissa_bits - 4 + 3) / 4); > + const int trailing_zeros = __countr_zero(effective_mantissa) / 4; > + const int shortest_full_precision = full_hex_precision - trailing_zeros; > + __glibcxx_assert(shortest_full_precision >= 0); > + > + int written_exponent = unbiased_exponent; > + const int effective_precision = > precision.value_or(shortest_full_precision); > + if (effective_precision < shortest_full_precision) > + { > + // When limiting the precision, we need to determine how to round the > + // least significant printed hexit. The following branchless > + // bit-level-parallel technique computes whether to round up the > + // mantissa bit at index N (according to round-to-nearest rules) when > + // dropping N bits of precision, for each index N in the bit vector. > + // This technique is borrowed from the MSVC implementation. > + using bitvec = mantissa_t; > + const bitvec round_bit = effective_mantissa << 1; > + const bitvec has_tail_bits = round_bit - 1; > + const bitvec lsb_bit = effective_mantissa; > + const bitvec should_round = round_bit & (has_tail_bits | lsb_bit); > + > + const int dropped_bits = 4*(full_hex_precision - effective_precision); > + // Mask out the dropped nibbles. > + effective_mantissa >>= dropped_bits; > + effective_mantissa <<= dropped_bits; > + if (should_round & (mantissa_t{1} << dropped_bits)) > + { > + // Round up the least significant nibble. > + effective_mantissa += mantissa_t{1} << dropped_bits; > + // Check and adjust for overflow of the leading nibble. When the > + // type has an implicit leading bit, then the leading nibble > + // before rounding is either 0 or 1, so it can't overflow. > + if constexpr (!has_implicit_leading_bit) > + { > + // The only supported floating-point type with explicit > + // leading mantissa bit is LDK_FLOAT80, i.e. x86 80-bit > + // extended precision, and so we hardcode the below overflow > + // check+adjustment for this type. > + static_assert(mantissa_t_width == 64 > + && rounded_mantissa_bits == 64); > + if (effective_mantissa == 0) > + { > + // We rounded up the least significant nibble and the > + // mantissa overflowed, e.g f.fcp+10 with precision=1 > + // became 10.0p+10. Absorb this extra hexit into the > + // exponent to obtain 1.0p+14. > + effective_mantissa > + = mantissa_t{1} << (rounded_mantissa_bits - 4); > + written_exponent += 4; > + } > + } > + } > + } > + > + // Compute the leading hexit and mask it out from the mantissa. > + char leading_hexit; > + if constexpr (has_implicit_leading_bit) > + { > + const unsigned nibble = effective_mantissa >> rounded_mantissa_bits; > + __glibcxx_assert(nibble <= 2); > + leading_hexit = '0' + nibble; > + effective_mantissa &= ~(mantissa_t{0b11} << rounded_mantissa_bits); > + } > + else > + { > + const unsigned nibble = effective_mantissa >> (rounded_mantissa_bits-4); > + __glibcxx_assert(nibble < 16); > + leading_hexit = "0123456789abcdef"[nibble]; > + effective_mantissa &= ~(mantissa_t{0b1111} << > (rounded_mantissa_bits-4)); > + written_exponent -= 3; > + } > + > + // Now before we start writing the string, determine the total length of > + // the output string and perform a single bounds check. > + int expected_output_length = sign + 1; > + if (effective_precision != 0) > + expected_output_length += strlen(".") + effective_precision; > + const int abs_written_exponent = abs(written_exponent); > + expected_output_length += (abs_written_exponent >= 10000 ? > strlen("p+ddddd") > + : abs_written_exponent >= 1000 ? strlen("p+dddd") > + : abs_written_exponent >= 100 ? strlen("p+ddd") > + : abs_written_exponent >= 10 ? strlen("p+dd") > + : strlen("p+d")); > + if (last - first < expected_output_length) > + return {last, errc::value_too_large}; > + > + const auto saved_first = first; > + // Write the negative sign and the leading hexit. > + if (sign) > + *first++ = '-'; > + *first++ = leading_hexit; > + > + if (effective_precision > 0) > + { > + *first++ = '.'; > + int written_hexits = 0; > + // Extract and mask out the leading nibble after the decimal point, > + // write its corresponding hexit, and repeat until the mantissa is > + // empty. > + int nibble_offset = rounded_mantissa_bits; > + if constexpr (!has_implicit_leading_bit) > + // We already printed the entire leading hexit. > + nibble_offset -= 4; > + while (effective_mantissa != 0) > + { > + nibble_offset -= 4; > + const unsigned nibble = effective_mantissa >> nibble_offset; > + __glibcxx_assert(nibble < 16); > + *first++ = "0123456789abcdef"[nibble]; > + ++written_hexits; > + effective_mantissa &= ~(mantissa_t{0b1111} << nibble_offset); > + } > + __glibcxx_assert(nibble_offset >= 0); > + __glibcxx_assert(written_hexits <= effective_precision); > + // Since the mantissa is now empty, every hexit hereafter must be '0'. > + if (int remaining_hexits = effective_precision - written_hexits) > + { > + memset(first, '0', remaining_hexits); > + first += remaining_hexits; > + } > + } > + > + // Finally, write the exponent. > + *first++ = 'p'; > + if (written_exponent >= 0) > + *first++ = '+'; > + const to_chars_result result = to_chars(first, last, written_exponent); > + __glibcxx_assert(result.ec == errc{} > + && result.ptr == saved_first + expected_output_length); > + return result; > + } > + > +template<typename T> > + static to_chars_result > + __floating_to_chars_shortest(char* first, char* const last, const T value, > + chars_format fmt) > + { > + if (fmt == chars_format::hex) > + return __floating_to_chars_hex(first, last, value, nullopt); > + > + __glibcxx_assert(fmt == chars_format::fixed > + || fmt == chars_format::scientific > </cut> _______________________________________________ linaro-toolchain mailing list linaro-toolchain@lists.linaro.org https://lists.linaro.org/mailman/listinfo/linaro-toolchain