Julie Tibshirani created LUCENE-10527: -----------------------------------------
Summary: Use bigger maxConn for last layer in HNSW Key: LUCENE-10527 URL: https://issues.apache.org/jira/browse/LUCENE-10527 Project: Lucene - Core Issue Type: Task Reporter: Julie Tibshirani Attachments: hnsw_plot.png, image-2022-04-20-14-53-58-484.png Recently I was rereading the HNSW paper ([https://arxiv.org/pdf/1603.09320.pdf)] and noticed that they suggest using a different maxConn for the upper layers vs. the bottom one (which contains the full neighborhood graph). Specifically, they suggest using maxConn=M for upper layers and maxConn=2*M for the bottom. This differs from what we do, which is to use maxConn=M for all layers. I tried updating our logic using a hacky patch, and noticed an improvement in latency for higher QPS values (which is consistent with the paper's observation): *Results on glove-100-angular* Parameters: M=32, efConstruction=100 !image-2022-04-20-14-53-58-484.png! As we'd expect, indexing becomes a bit slower: {code:java} Baseline: Indexed 1183514 documents in 733s Candidate: Indexed 1183514 documents in 948s{code} When we benchmarked Lucene HNSW against hnswlib in LUCENE-9937, we noticed a big difference in recall for the same settings of M and efConstruction. (Even adding graph layers in LUCENE-10054 didn't really affect recall.) With this change, the recall is now very similar: *Results on glove-100-angular* Parameters: M=32, efConstruction=100 {code:java} num_cands Approach Recall QPS 10 luceneknn dim=100 {'M': 32, 'efConstruction': 100} 0.563 4410.499 50 luceneknn dim=100 {'M': 32, 'efConstruction': 100} 0.798 1956.280 100 luceneknn dim=100 {'M': 32, 'efConstruction': 100} 0.862 1209.734 100 luceneknn dim=100 {'M': 32, 'efConstruction': 100} 0.958 341.428 800 luceneknn dim=100 {'M': 32, 'efConstruction': 100} 0.974 230.396 1000 luceneknn dim=100 {'M': 32, 'efConstruction': 100} 0.980 188.757 10 hnswlib ({'M': 32, 'efConstruction': 100}) 0.552 16745.433 50 hnswlib ({'M': 32, 'efConstruction': 100}) 0.794 5738.468 100 hnswlib ({'M': 32, 'efConstruction': 100}) 0.860 3336.386 500 hnswlib ({'M': 32, 'efConstruction': 100}) 0.956 832.982 800 hnswlib ({'M': 32, 'efConstruction': 100}) 0.973 541.097 1000 hnswlib ({'M': 32, 'efConstruction': 100}) 0.979 442.163 {code} I think it'd be nice update to maxConn so that we faithfully implement the paper's algorithm. This is probably least surprising for users, and I don't see a strong reason to takeĀ a different approach from the paper? Let me know what you think! -- This message was sent by Atlassian Jira (v8.20.7#820007) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@lucene.apache.org For additional commands, e-mail: issues-h...@lucene.apache.org