Fokko commented on PR #7831:
URL: https://github.com/apache/iceberg/pull/7831#issuecomment-1631183637

   For some reason my big comment was collapsed:
   
   Since Arrow is column-oriented, I'm sure that it will follow the order of 
the write schema:
   
   
![image](https://github.com/apache/iceberg/assets/1134248/5dd5016e-7761-4cdc-a169-d3c4744c581b)
   
   The reason I try to avoid using too many internal details from PyArrow is 
that we support PyArrow `[9.0.0, 12.0.1]` currently. There is no guarantee that 
all these internals stay the same, therefore I think we should do as much as 
possible within our own control (also regarding the internal Parquet types, or 
how the column names are structured).
   
   We already have the write schema, so we can easily filter out the primitive 
types:
   
   ```python
   class 
PyArrowStatisticsCollector(PreOrderSchemaVisitor[List[StatisticsCollector]]):
       _field_id = 0
       _schema: Schema
       _properties: Properties
   
       def __init__(self, schema: Schema, properties: Dict[str, str]):
           self._schema = schema
           self._properties = properties
   
       def schema(self, schema: Schema, struct_result: Callable[[], 
List[StatisticsCollector]]) -> List[StatisticsCollector]:
           return struct_result()
   
       def struct(self, struct: StructType, field_results: List[Callable[[], 
List[StatisticsCollector]]]) -> List[StatisticsCollector]:
           return list(chain(*[result() for result in field_results]))
   
       def field(self, field: NestedField, field_result: Callable[[], 
List[StatisticsCollector]]) -> List[StatisticsCollector]:
           self._field_id = field.field_id
           result = field_result()
           return result
   
       def list(self, list_type: ListType, element_result: Callable[[], 
List[StatisticsCollector]]) -> List[StatisticsCollector]:
           self._field_id = list_type.element_id
           return element_result()
   
       def map(self, map_type: MapType, key_result: Callable[[], 
List[StatisticsCollector]], value_result: Callable[[], 
List[StatisticsCollector]]) -> List[StatisticsCollector]:
           self._field_id = map_type.key_id
           k = key_result()
           self._field_id = map_type.value_id
           v = value_result()
           return k + v
   
       def primitive(self, primitive: PrimitiveType) -> 
List[StatisticsCollector]:
           return [StatisticsCollector(
               field_id=self._field_id,
               iceberg_type=primitive,
               mode=MetricsMode.TRUNC
               # schema
               # 
self._properties.get(f"write.metadata.metrics.column.{schema.find_column_name(self._field_id)}")
           )]
   ```
   
   This way we get a nice list of columns that we need to collect statistics 
for. We have:
   
   ```python
   @dataclass(frozen=True)
   class StatisticsCollector:
       field_id: int
       iceberg_type: PrimitiveType
       mode: MetricsMode
   ```
   
   Where we can use the `field_id` to properly populate the maps, and the 
`iceberg_type` to feed into `to_bytes` to do the conversion (so we don't have 
to have yet another one for PyArrow).
   
   I did a quick test, and it seems to work:
   ```python
   def test_complex_schema(table_schema_nested: Schema):
       tbl = pa.Table.from_pydict({
           "foo": ["a", "b"],
           "bar": [1, 2],
           "baz": [False, True],
           "qux": [["a", "b"], ["c", "d"]],
           "quux": [[("a", (("aa", 1), ("ab", 2)))], [("b", (("ba", 3), ("bb", 
4)))]],
           "location": [[(52.377956, 4.897070), (4.897070, -122.431297)],
                        [(43.618881, -116.215019), (41.881832, -87.623177)]],
           "person": [("Fokko", 33), ("Max", 42)]  # Possible data quality issue
       },
           schema=schema_to_pyarrow(table_schema_nested)
       )
       stats_columns = pre_order_visit(table_schema_nested, 
PyArrowStatisticsCollector(table_schema_nested, {}))
   
       visited_paths = []
   
       def file_visitor(written_file: Any) -> None:
           visited_paths.append(written_file)
   
       with TemporaryDirectory() as tmpdir:
           pq.write_to_dataset(tbl, tmpdir, file_visitor=file_visitor)
   
       assert visited_paths[0].metadata.num_columns == len(stats_columns)
   ```


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to