rdblue commented on code in PR #6437: URL: https://github.com/apache/iceberg/pull/6437#discussion_r1052522227
########## python/pyiceberg/io/pyarrow.py: ########## @@ -437,3 +459,120 @@ def visit_or(self, left_result: pc.Expression, right_result: pc.Expression) -> p def expression_to_pyarrow(expr: BooleanExpression) -> pc.Expression: return boolean_expression_visit(expr, _ConvertToArrowExpression()) + + +class _ConstructFinalSchema(SchemaVisitor[pa.ChunkedArray]): + file_schema: Schema + table: pa.Table + + def __init__(self, file_schema: Schema, table: pa.Table): + self.file_schema = file_schema + self.table = table + + def schema(self, schema: Schema, struct_result: List[pa.ChunkedArray]) -> pa.Table: + return pa.table(struct_result, schema=schema_to_pyarrow(schema)) + + def struct(self, _: StructType, field_results: List[pa.ChunkedArray]) -> List[pa.ChunkedArray]: + return field_results + + def field(self, field: NestedField, _: pa.ChunkedArray) -> pa.ChunkedArray: + column_name = self.file_schema.find_column_name(field.field_id) + + if column_name: + column_idx = self.table.schema.get_field_index(column_name) + else: + column_idx = -1 + + expected_arrow_type = schema_to_pyarrow(field.field_type) + + # The idx will be -1 when the column can't be found + if column_idx >= 0: + column_field: pa.Field = self.table.schema[column_idx] + column_arrow_type: pa.DataType = column_field.type + column_data: pa.ChunkedArray = self.table[column_idx] + file_type = self.file_schema.find_type(field.field_id) + + # In case of schema evolution + if column_arrow_type != expected_arrow_type: + # To check if the promotion is allowed + _ = promote(file_type, field.field_type) + column_data = column_data.cast(expected_arrow_type) + else: + import numpy as np + + column_data = pa.array(np.full(shape=len(self.table), fill_value=None), type=expected_arrow_type) + return column_data + + def list(self, _: ListType, element_result: pa.ChunkedArray) -> pa.ChunkedArray: + pass + + def map(self, _: MapType, key_result: pa.ChunkedArray, value_result: pa.ChunkedArray) -> pa.DataType: + pass + + def primitive(self, primitive: PrimitiveType) -> pa.ChunkedArray: + pass + + +def to_final_schema(final_schema: Schema, schema: Schema, table: pa.Table) -> pa.Table: + return visit(final_schema, _ConstructFinalSchema(schema, table)) + + +def project_table( + files: Iterable["FileScanTask"], table: "Table", row_filter: BooleanExpression, projected_schema: Schema, case_sensitive: bool +) -> pa.Table: + """Resolves the right columns based on the identifier + + Args: + files(Iterable[FileScanTask]): A URI or a path to a local file + table(Table): The table that's being queried + row_filter(BooleanExpression): The expression for filtering rows + projected_schema(Schema): The output schema + case_sensitive(bool): Case sensitivity when looking up column names + + Raises: + ResolveException: When an incompatible query is done + """ + + if isinstance(table.io, PyArrowFileIO): + scheme, path = PyArrowFileIO.parse_location(table.location()) + fs = table.io.get_fs(scheme) + else: + raise ValueError(f"Expected PyArrowFileIO, got: {table.io}") + + projected_field_ids = projected_schema.field_ids + bound_row_filter = bind(table.schema(), row_filter, case_sensitive=case_sensitive) + + tables = [] + for task in files: + _, path = PyArrowFileIO.parse_location(task.file.file_path) + + # Get the schema + with fs.open_input_file(path) as fout: + parquet_schema = pq.read_schema(fout) + schema_raw = parquet_schema.metadata.get(ICEBERG_SCHEMA) + file_schema = Schema.parse_raw(schema_raw) + + file_project_schema = prune_columns(file_schema, projected_field_ids) + + pyarrow_filter = None + if row_filter is not AlwaysTrue(): + row_filter = translate_column_names(bound_row_filter, file_schema, case_sensitive=case_sensitive) + bound_row_filter = bind(file_schema, row_filter, case_sensitive=case_sensitive) + pyarrow_filter = expression_to_pyarrow(bound_row_filter) + + if file_schema is None: + raise ValueError(f"Missing Iceberg schema in Metadata for file: {path}") + + # Prune the stuff that we don't need anyway + file_project_schema_arrow = schema_to_pyarrow(file_project_schema) Review Comment: This would be a good test case to add, as well as a test case that uses a predicate on a file that doesn't contain the column, like `col_int > 2` for `table_str`. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org