shangxinli commented on code in PR #14435:
URL: https://github.com/apache/iceberg/pull/14435#discussion_r2563032124


##########
spark/v4.0/spark/src/main/java/org/apache/iceberg/spark/actions/SparkParquetFileMergeRunner.java:
##########
@@ -0,0 +1,474 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+package org.apache.iceberg.spark.actions;
+
+import java.io.IOException;
+import java.io.Serializable;
+import java.nio.ByteBuffer;
+import java.util.List;
+import java.util.Set;
+import java.util.stream.Collectors;
+import org.apache.hadoop.conf.Configuration;
+import org.apache.iceberg.DataFile;
+import org.apache.iceberg.DataFiles;
+import org.apache.iceberg.FileFormat;
+import org.apache.iceberg.MetadataColumns;
+import org.apache.iceberg.Metrics;
+import org.apache.iceberg.MetricsConfig;
+import org.apache.iceberg.PartitionSpec;
+import org.apache.iceberg.StructLike;
+import org.apache.iceberg.Table;
+import org.apache.iceberg.TableProperties;
+import org.apache.iceberg.TableUtil;
+import org.apache.iceberg.actions.RewriteFileGroup;
+import org.apache.iceberg.encryption.EncryptedOutputFile;
+import org.apache.iceberg.io.FileIO;
+import org.apache.iceberg.io.InputFile;
+import org.apache.iceberg.io.OutputFileFactory;
+import org.apache.iceberg.parquet.ParquetFileMerger;
+import org.apache.iceberg.parquet.ParquetUtil;
+import org.apache.iceberg.relocated.com.google.common.collect.Lists;
+import org.apache.iceberg.relocated.com.google.common.collect.Sets;
+import org.apache.iceberg.spark.FileRewriteCoordinator;
+import org.apache.iceberg.types.Conversions;
+import org.apache.iceberg.types.Types;
+import org.apache.iceberg.util.PropertyUtil;
+import org.apache.parquet.crypto.ParquetCryptoRuntimeException;
+import org.apache.parquet.schema.MessageType;
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.sql.SparkSession;
+import org.slf4j.Logger;
+import org.slf4j.LoggerFactory;
+
+/**
+ * Extension of SparkBinPackFileRewriteRunner that uses ParquetFileMerger for 
efficient row-group
+ * level merging of Parquet files when applicable.
+ *
+ * <p>This runner uses {@link ParquetFileMerger} to merge Parquet files at the 
row-group level
+ * without full deserialization, which is significantly faster than the 
standard Spark rewrite
+ * approach for Parquet files.
+ *
+ * <p>The decision to use this runner vs. SparkBinPackFileRewriteRunner is 
controlled by the
+ * configuration option {@code use-parquet-file-merger}.
+ */
+public class SparkParquetFileMergeRunner extends SparkBinPackFileRewriteRunner 
{
+  private static final Logger LOG = 
LoggerFactory.getLogger(SparkParquetFileMergeRunner.class);
+  private final FileRewriteCoordinator coordinator = 
FileRewriteCoordinator.get();
+
+  public SparkParquetFileMergeRunner(SparkSession spark, Table table) {
+    super(spark, table);
+  }
+
+  @Override
+  public String description() {
+    return "PARQUET-MERGE";
+  }
+
+  @Override
+  protected void doRewrite(String groupId, RewriteFileGroup group) {
+    // Early validation: check if requirements are met and get schema
+    MessageType schema = validateAndGetSchema(group);
+    if (schema == null) {
+      LOG.info(
+          "Row-group merge requirements not met for group {}. Using standard 
Spark rewrite.",
+          groupId);
+      super.doRewrite(groupId, group);
+      return;
+    }
+
+    // Requirements met - attempt row-group level merge
+    try {
+      LOG.info(
+          "Merging {} Parquet files using row-group level merge (group: {})",
+          group.rewrittenFiles().size(),
+          groupId);
+      mergeParquetFilesDistributed(groupId, group, schema);
+    } catch (Exception e) {
+      LOG.warn(
+          "Row-group merge failed for group {}, falling back to standard Spark 
rewrite: {}",
+          groupId,
+          e.getMessage(),
+          e);
+      // Fallback to standard rewrite
+      super.doRewrite(groupId, group);
+    }
+  }
+
+  /**
+   * Validates if the file group can use row-group level merging and returns 
the schema.
+   *
+   * <p>Requirements:
+   *
+   * <ul>
+   *   <li>All files must be Parquet format
+   *   <li>Table must not have a sort order (no sorting or z-ordering)
+   *   <li>Files must not have delete files or delete vectors
+   *   <li>Files must have compatible schemas (verified by 
ParquetFileMerger.readAndValidateSchema)
+   *   <li>Files must not be encrypted (detected by 
ParquetCryptoRuntimeException)
+   * </ul>
+   *
+   * @param group the file group to check
+   * @return the Parquet schema if row-group merging can be used, null 
otherwise
+   */
+  private MessageType validateAndGetSchema(RewriteFileGroup group) {
+    // Check if all files are Parquet format
+    boolean allParquet =
+        group.rewrittenFiles().stream().allMatch(file -> file.format() == 
FileFormat.PARQUET);
+
+    if (!allParquet) {
+      LOG.debug("Cannot use row-group merge: not all files are Parquet 
format");
+      return null;
+    }
+
+    // Check if table has a sort order - row-group merge cannot preserve sort 
order
+    if (table().sortOrder().isSorted()) {
+      LOG.debug(
+          "Cannot use row-group merge: table has a sort order ({}). "
+              + "Row-group merging would not preserve the sort order.",
+          table().sortOrder());
+      return null;
+    }
+
+    // Check for delete files - row-group merge cannot apply deletes
+    boolean hasDeletes = group.fileScanTasks().stream().anyMatch(task -> 
!task.deletes().isEmpty());
+
+    if (hasDeletes) {
+      LOG.debug(
+          "Cannot use row-group merge: files have delete files or delete 
vectors. "
+              + "Row-group merging cannot apply deletes.");
+      return null;
+    }
+
+    // Validate schema compatibility and check for encryption using Iceberg 
InputFile API
+    try {
+      List<InputFile> inputFiles =
+          group.rewrittenFiles().stream()
+              .map(f -> table().io().newInputFile(f.path().toString()))
+              .collect(Collectors.toList());
+
+      // Validate files can be merged (returns schema if valid, null otherwise)
+      MessageType schema = ParquetFileMerger.readAndValidateSchema(inputFiles);
+
+      if (schema == null) {
+        LOG.warn(
+            "Cannot use row-group merge for {} files. Falling back to standard 
rewrite. "
+                + "Reason: Schema validation failed",
+            group.rewrittenFiles().size());
+      }
+
+      return schema;
+    } catch (ParquetCryptoRuntimeException e) {
+      // ParquetFileReader.open() throws this when trying to read an encrypted 
footer without keys.
+      // This happens in ParquetFileMerger.readAndValidateSchema() when 
validating schemas.
+      // Exception message: "Trying to read file with encrypted footer. No 
keys available"
+      LOG.debug("Cannot use row-group merge: encrypted files detected", e);
+      return null;
+    } catch (Exception e) {
+      LOG.warn("Cannot use row-group merge: validation failed", e);
+      return null;
+    }
+  }
+
+  /**
+   * Merges Parquet files in the group, respecting the expected output file 
count determined by the
+   * planner. Files are distributed evenly across the expected number of 
output files.
+   */
+  private void mergeParquetFilesDistributed(
+      String groupId, RewriteFileGroup group, MessageType schema) {
+    PartitionSpec spec = table().specs().get(group.outputSpecId());
+    StructLike partition = group.info().partition();
+    long maxOutputFileSize = group.maxOutputFileSize();
+    int expectedOutputFiles = group.expectedOutputFiles();
+
+    LOG.info(
+        "Merging {} Parquet files into {} expected output files (group: {})",
+        group.rewrittenFiles().size(),
+        expectedOutputFiles,
+        groupId);
+
+    // Check if table supports row lineage
+    boolean preserveRowLineage = TableUtil.supportsRowLineage(table());
+
+    // Distribute files evenly across expected output files (planner already 
determined the count)
+    List<List<DataFile>> fileBatches =
+        distributeFilesEvenly(group.rewrittenFiles(), expectedOutputFiles);
+
+    // Get row group size from table properties
+    long rowGroupSize =
+        PropertyUtil.propertyAsLong(
+            table().properties(),
+            TableProperties.PARQUET_ROW_GROUP_SIZE_BYTES,
+            TableProperties.PARQUET_ROW_GROUP_SIZE_BYTES_DEFAULT);
+
+    // Get column index truncate length from Hadoop Configuration (same as 
ParquetWriter)
+    Configuration hadoopConf = spark().sessionState().newHadoopConf();
+    int columnIndexTruncateLength = 
hadoopConf.getInt("parquet.columnindex.truncate.length", 64);

Review Comment:
   Replaced hardcoded string and default value with constants from ParquetWriter



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to