Erigara commented on code in PR #2029: URL: https://github.com/apache/iceberg-python/pull/2029#discussion_r2100859083
########## pyiceberg/expressions/visitors.py: ########## @@ -894,12 +895,17 @@ def visit_unbound_predicate(self, predicate: UnboundPredicate[L]) -> BooleanExpr def visit_bound_predicate(self, predicate: BoundPredicate[L]) -> BooleanExpression: file_column_name = self.file_schema.find_column_name(predicate.term.ref().field.field_id) + field_name = predicate.term.ref().field.name if file_column_name is None: # In the case of schema evolution, the column might not be present # in the file schema when reading older data if isinstance(predicate, BoundIsNull): return AlwaysTrue() + # Projected fields are only available for identity partition fields + # Which mean that partition pruning excluded partition field which evaluates to false + elif field_name in self.projected_missing_fields: + return AlwaysTrue() Review Comment: Here is a as small example as i could produce (it still quite big in terms of LoC due to setup). Basically it works with the following iceberg table: | col1 | col2 | | ---- | ---- | | 1 | 1 | | 1 | 2 | | 2 | 1 | | 2 | 2 | Where `col1` is used for partitioning and absent from parquet data file. So physical layout is following: - `col1 = 1 -> warehouse/1.parquet` - `col2 = 2 -> warehouse/2.parquet` Both files `1.parquet` and `2.parquet` are the same with following structure `{'col2: [1, 2]}`. ```python #!/usr/bin/env python import pyarrow as pa import pyarrow.parquet as pq from pyiceberg import expressions as expr from pyiceberg.catalog import load_catalog from pyiceberg.partitioning import PartitionSpec, PartitionField from pyiceberg.io.pyarrow import parquet_file_to_data_file from pyiceberg.transforms import IdentityTransform from pyiceberg.schema import Schema from pyiceberg.table.name_mapping import NameMapping, MappedField from pyiceberg.types import ( NestedField, LongType, ) catalog = load_catalog( "default", **{ "type": "in-memory", "warehouse": "warehouse/", } ) catalog.create_namespace("default") # create iceberg table schema = Schema( NestedField(field_id=1, name="col1", field_type=LongType()), NestedField(field_id=2, name="col2", field_type=LongType()), ) mapping = NameMapping([ MappedField(field_id=1,names=["col1"]), MappedField(field_id=2,names=["col2"]), ]) table = catalog.create_table_if_not_exists( "default.table", schema=schema, partition_spec=PartitionSpec( PartitionField(source_id=1, field_id=1001, transform=IdentityTransform(), name="col1"), ), properties={"schema.name-mapping.default": mapping.model_dump_json()}, ) # write 2 parquet files: one for col1 partition values 1 and 2 file_1 = "warehouse/1.parquet" file_2 = "warehouse/2.parquet" df = pa.Table.from_arrays([[1, 2]], names=["col2"]) pq.write_table(df, file_1) pq.write_table(df, file_2) # add_files into iceberg table assign each file partition value with table.transaction() as tx: with tx.update_snapshot().fast_append() as fast_append: data_file_1 = parquet_file_to_data_file(tx._table.io, tx.table_metadata, file_1) data_file_1.partition[0] = 1 fast_append.append_data_file(data_file_1) data_file_2 = parquet_file_to_data_file(tx._table.io, tx.table_metadata, file_1) data_file_2.partition[0] = 2 fast_append.append_data_file(data_file_2) expr_1 = expr.And(expr.EqualTo("col1", 1), expr.EqualTo("col2", 1)) scan_1 = table.scan(row_filter=expr_1) len_1 = len(scan_1.to_arrow()) assert len_1 == 1 expr_2 = expr.And(expr.EqualTo("col1", 2), expr.EqualTo("col2", 2)) scan_2 = table.scan(row_filter=expr_2) len_2 = len(scan_2.to_arrow()) assert len_2 == 1 expr_3 = expr.Or(expr_1, expr_2) scan_3 = table.scan(row_filter=expr_3) len_3 = len(scan_3.to_arrow()) assert len_3 == len_1 + len_2 ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org