andormarkus commented on issue #1751: URL: https://github.com/apache/iceberg-python/issues/1751#issuecomment-2706056065
Hi @Fokko, I'd like to share a working example that demonstrates how to serialize and deserialize both partition and non-partitioned tables: ```python output = BytesIO() # Get table schema partition_type = table.spec().partition_type(schema=table.schema()) schema = data_file_with_partition(format_version= table.format_version, partition_type=partition_type) # Encode encoder = BinaryEncoder(output) construct_writer(file_schema=schema).write(encoder, data_file) output = output.getvalue() # Decode decoder = CythonBinaryDecoder(output) actual_data_file = resolve_reader(schema, schema, read_types={-1: DataFile}, ).read(decoder) ``` I believe we should expand the documentation so the community can benefit from this work. However, I'm not sure which section would be most appropriate since this is an advanced topic that doesn't require code changes. Additionally, I think we should create a public wrapper around `pyiceberg.io.pyarrow._dataframe_to_data_files` since achieving distributed writes currently requires using a private method. Full unittest ```python import os import uuid from typing import Any, Dict import pytest import tempfile import pyarrow as pa from io import BytesIO from pyiceberg.io.pyarrow import _dataframe_to_data_files from pyiceberg.schema import Schema from pyiceberg.types import NestedField, StringType, DoubleType, LongType, BinaryType from pyiceberg.partitioning import PartitionSpec, PartitionField from pyiceberg.transforms import IdentityTransform from pyiceberg.avro.decoder_fast import CythonBinaryDecoder from pyiceberg.avro.encoder import BinaryEncoder from pyiceberg.avro.resolver import construct_writer, resolve_reader from pyiceberg.manifest import DATA_FILE_TYPE, DEFAULT_READ_VERSION, DataFile, data_file_with_partition from pyiceberg.typedef import Record from pyiceberg.catalog import load_catalog def get_schema(): # Define schema with partitioned fields return Schema( NestedField(1, "city", StringType(), required=False), NestedField(2, "lat", DoubleType(), required=False), NestedField(3, "long", DoubleType(), required=False), NestedField(4, "portal_id", LongType(), required=False), NestedField(5, "timestamp_day", LongType(), required=False), NestedField(6, "binary_data", BinaryType(), required=False), ) def get_partition_spec(): # Define partition spec (portal_id, timestamp_day) return PartitionSpec( spec_id=0, fields=[ PartitionField( source_id=4, field_id=1000, transform=IdentityTransform(), name="portal_id" ), PartitionField( source_id=5, field_id=1001, transform=IdentityTransform(), name="timestamp_day" ), ] ) def get_empty_partition_spec(): # Define empty partition spec for non-partitioned tests return PartitionSpec(spec_id=0, fields=[]) def get_sample_data(): # Create sample data with binary field return pa.Table.from_pylist([ {"city": "Amsterdam", "lat": 52.371807, "long": 4.896029, "portal_id": 9, "timestamp_day": 20240301, "binary_data": b"Amsterdam data"}, {"city": "San Francisco", "lat": 37.773972, "long": -122.431297, "portal_id": 9, "timestamp_day": 20240301, "binary_data": b"San Francisco data"}, {"city": "Drachten", "lat": 53.11254, "long": 6.0989, "portal_id": 10, "timestamp_day": 20240302, "binary_data": b"Drachten data"}, {"city": "Paris", "lat": 48.864716, "long": 2.349014, "portal_id": 10, "timestamp_day": 20240302, "binary_data": b"Paris data"}, ]) def compare_datafiles(expected: Any, actual: Any) -> Dict[str, Any]: """ Compare two DataFile objects and return differences. Returns empty dict if they're identical, otherwise returns the differences. Args: expected: First DataFile object to compare actual: Second DataFile object to compare Returns: Dictionary of differences, empty if objects are identical Raises: TypeError: If either argument is not a DataFile """ # Input validation - make sure both are actually DataFile objects if not isinstance(expected, DataFile): raise TypeError(f"First argument must be a DataFile, got {type(expected)} instead") if not isinstance(actual, DataFile): raise TypeError(f"Second argument must be a DataFile, got {type(actual)} instead") differences = {} # Compare all slots from DataFile for slot in expected.__class__.__slots__: if slot == "_struct": # Skip internal struct field continue if hasattr(expected, slot) and hasattr(actual, slot): expected_value = getattr(expected, slot) actual_value = getattr(actual, slot) # Special handling for different types if isinstance(expected_value, Record) and isinstance(actual_value, Record): # Enhanced comparison for Record objects (especially partition) record_differences = {} # Check structure (_position_to_field_name) if hasattr(expected_value, "_position_to_field_name") and hasattr(actual_value, "_position_to_field_name"): orig_fields = expected_value._position_to_field_name des_fields = actual_value._position_to_field_name if orig_fields != des_fields: record_differences["_position_to_field_name"] = { "expected": orig_fields, "actual": des_fields } # Check data values if hasattr(expected_value, "_data") and hasattr(actual_value, "_data"): # Ensure both _data attributes are tuples/lists and have values orig_data = expected_value._data if expected_value._data else () des_data = actual_value._data if actual_value._data else () # Check if one is empty but the other isn't if bool(orig_data) != bool(des_data): record_differences["_data_presence"] = { "expected": "present" if orig_data else "empty", "actual": "present" if des_data else "empty" } # Compare content if both exist if orig_data and des_data: if len(orig_data) != len(des_data): record_differences["_data_length"] = { "expected": len(orig_data), "actual": len(des_data) } else: # Compare each item for i, (orig_item, des_item) in enumerate(zip(orig_data, des_data)): if orig_item != des_item: record_differences[f"_data[{i}]"] = { "expected": orig_item, "actual": des_item } # Additional check: Try to access fields directly as attributes if hasattr(expected_value, "_position_to_field_name"): for field_name in expected_value._position_to_field_name: orig_attr = getattr(expected_value, field_name, None) des_attr = getattr(actual_value, field_name, None) if orig_attr != des_attr: record_differences[f"attr.{field_name}"] = { "expected": orig_attr, "actual": des_attr } # If any differences were found in the record if record_differences: differences[slot] = record_differences elif isinstance(expected_value, dict) and isinstance(actual_value, dict): # Compare dictionaries (like lower_bounds, upper_bounds) if set(expected_value.keys()) != set(actual_value.keys()): differences[f"{slot}.keys"] = { "expected": set(expected_value.keys()), "actual": set(actual_value.keys()) } # Compare values for key in expected_value: if key in actual_value: if expected_value[key] != actual_value[key]: differences[f"{slot}[{key}]"] = { "expected": expected_value[key], "actual": actual_value[key] } elif expected_value != actual_value: differences[slot] = { "expected": expected_value, "actual": actual_value } return differences class TestIcebergBase: """Base class for Iceberg tests with shared methods""" def serialize_and_deserialize(self, table, data_file): """Helper method to serialize and deserialize a DataFile""" output = BytesIO() # Get table schema partition_type = table.spec().partition_type(schema=table.schema()) schema = data_file_with_partition(format_version= table.format_version, partition_type=partition_type) # Encode encoder = BinaryEncoder(output) construct_writer(file_schema=schema).write(encoder, data_file) output = output.getvalue() # Decode decoder = CythonBinaryDecoder(output) actual_data_file = resolve_reader(schema, schema, read_types={-1: DataFile}, ).read(decoder) return actual_data_file def append_data_file(self, table, data_file): """Helper method to append a DataFile to a table""" with table.transaction() as trx: with trx.update_snapshot().fast_append() as update_snapshot: update_snapshot.append_data_file(data_file) @staticmethod def serialize_datafile_to_avro_file(datafile: DataFile, file_path: str) -> None: """ Serialize a DataFile to Avro format and write it directly to disk. Args: datafile: The DataFile object to serialize file_path: The path where the file should be written """ schema = DATA_FILE_TYPE[DEFAULT_READ_VERSION] # Open a file for binary writing with open(file_path, 'wb') as file_output: encoder = BinaryEncoder(file_output) construct_writer(file_schema=schema).write(encoder, datafile) @pytest.fixture(scope="class") def iceberg_setup_with_partition(): """Create a temporary Iceberg table with partitioning""" # Set data files output directory temp_dir = tempfile.mkdtemp() os.environ["PYICEBERG_PARQUET_OUTPUT"] = temp_dir # Create a catalog and schema catalog = load_catalog("catalog", type="in-memory") catalog.create_namespace("default") # Create table with partitioning table = catalog.create_table( identifier="default.cities_with_partition", schema=get_schema(), partition_spec=get_partition_spec() ) # Create sample data with binary field data = get_sample_data() data_files = list(_dataframe_to_data_files( table_metadata=table.metadata, write_uuid=uuid.uuid4(), df=data, io=table.io)) yield { "catalog": catalog, "table": table, "sample_data_file": data_files[0], "data_files": data_files } # Cleanup after all tests if os.path.exists(temp_dir): for root, dirs, files in os.walk(temp_dir, topdown=False): for file in files: os.remove(os.path.join(root, file)) for dir in dirs: os.rmdir(os.path.join(root, dir)) os.rmdir(temp_dir) @pytest.fixture(scope="class") def iceberg_setup_no_partition(): """Create a temporary Iceberg table without partitioning""" # Set data files output directory temp_dir = tempfile.mkdtemp() os.environ["PYICEBERG_PARQUET_OUTPUT"] = temp_dir # Create a catalog and schema catalog = load_catalog("catalog", type="in-memory") catalog.create_namespace("default") # Create table without partitioning table = catalog.create_table( identifier="default.cities_no_partition", schema=get_schema(), partition_spec=get_empty_partition_spec() ) # Create sample data with binary field data = get_sample_data() data_files = list(_dataframe_to_data_files( table_metadata=table.metadata, write_uuid=uuid.uuid4(), df=data, io=table.io)) yield { "catalog": catalog, "table": table, "sample_data_file": data_files[0], "data_files": data_files } # Cleanup after all tests if os.path.exists(temp_dir): for root, dirs, files in os.walk(temp_dir, topdown=False): for file in files: os.remove(os.path.join(root, file)) for dir in dirs: os.rmdir(os.path.join(root, dir)) os.rmdir(temp_dir) class TestIcebergWithPartition(TestIcebergBase): """Tests for Iceberg operations with partition""" @pytest.fixture(autouse=True) def setup(self, iceberg_setup_with_partition): """Setup for all tests in this class""" self.setup_data = iceberg_setup_with_partition self.sample_data_file = self.setup_data["sample_data_file"] self.data_files = self.setup_data["data_files"] self.table = self.setup_data["table"] def test_serialize(self): """Test serializing and deserializing DataFile with partition""" actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file) differences = compare_datafiles(self.sample_data_file, actual_data_file) assert not differences, f"Found differences: {differences}" def test_fast_append_working(self): """Test fast append with native DataFile with partition""" self.append_data_file(self.table, self.data_files[0]) def test_fast_append_with_avro(self): """Test fast append with Avro deserialized DataFile with partition""" actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file) self.append_data_file(self.table, actual_data_file) class TestIcebergNoPartition(TestIcebergBase): """Tests for Iceberg operations without partition""" @pytest.fixture(autouse=True) def setup(self, iceberg_setup_no_partition): """Setup for all tests in this class""" self.setup_data = iceberg_setup_no_partition self.sample_data_file = self.setup_data["sample_data_file"] self.data_files = self.setup_data["data_files"] self.table = self.setup_data["table"] def test_serialize(self): """Test serializing and deserializing DataFile without partition""" actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file) differences = compare_datafiles(self.sample_data_file, actual_data_file) assert not differences, f"Found differences: {differences}" def test_fast_append_working(self): """Test fast append with native DataFile without partition""" self.append_data_file(self.table, self.data_files[0]) def test_fast_append_with_avro(self): """Test fast append with Avro deserialized DataFile without partition""" actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file) self.append_data_file(self.table, actual_data_file) ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org