Fokko commented on code in PR #1534: URL: https://github.com/apache/iceberg-python/pull/1534#discussion_r1944888949
########## pyiceberg/table/__init__.py: ########## @@ -1064,6 +1066,97 @@ def name_mapping(self) -> Optional[NameMapping]: """Return the table's field-id NameMapping.""" return self.metadata.name_mapping() + @dataclass(frozen=True) + class UpsertResult: + """Summary the upsert operation""" + rows_updated: int = 0 + rows_inserted: int = 0 + + def upsert(self, df: pa.Table, join_cols: list + , when_matched_update_all: bool = True + , when_not_matched_insert_all: bool = True + ) -> UpsertResult: + """ + Shorthand API for performing an upsert to an iceberg table. + + Args: + self: the target Iceberg table to execute the upsert on + df: The input dataframe to upsert with the table's data. + join_cols: The columns to join on. These are essentially analogous to primary keys + when_matched_update_all: Bool indicating to update rows that are matched but require an update due to a value in a non-key column changing + when_not_matched_insert_all: Bool indicating new rows to be inserted that do not match any existing rows in the table + + Example Use Cases: + Case 1: Both Parameters = True (Full Upsert) + Existing row found → Update it + New row found → Insert it + + Case 2: when_matched_update_all = False, when_not_matched_insert_all = True + Existing row found → Do nothing (no updates) + New row found → Insert it + + Case 3: when_matched_update_all = True, when_not_matched_insert_all = False + Existing row found → Update it + New row found → Do nothing (no inserts) + + Case 4: Both Parameters = False (No Merge Effect) + Existing row found → Do nothing + New row found → Do nothing + (Function effectively does nothing) + + + Returns: a UpsertResult class (contains details of rows updated and inserted) + """ + + from pyiceberg.table import upsert_util + + if when_matched_update_all == False and when_not_matched_insert_all == False: + raise Exception('no upsert options selected...exiting') Review Comment: I think a `ValueError` might be more appropriate here. From the [docs](https://docs.python.org/3/library/exceptions.html#ValueError): Raised when an operation or function receives an argument that has the right type but an inappropriate value, and the situation is not described by a more precise exception such as [IndexError](https://docs.python.org/3/library/exceptions.html#IndexError). ```suggestion raise ValueError('no upsert options selected...exiting') ``` ########## pyiceberg/table/__init__.py: ########## @@ -1064,6 +1066,97 @@ def name_mapping(self) -> Optional[NameMapping]: """Return the table's field-id NameMapping.""" return self.metadata.name_mapping() + @dataclass(frozen=True) + class UpsertResult: + """Summary the upsert operation""" + rows_updated: int = 0 + rows_inserted: int = 0 + + def upsert(self, df: pa.Table, join_cols: list + , when_matched_update_all: bool = True + , when_not_matched_insert_all: bool = True + ) -> UpsertResult: + """ + Shorthand API for performing an upsert to an iceberg table. + + Args: + self: the target Iceberg table to execute the upsert on + df: The input dataframe to upsert with the table's data. + join_cols: The columns to join on. These are essentially analogous to primary keys + when_matched_update_all: Bool indicating to update rows that are matched but require an update due to a value in a non-key column changing + when_not_matched_insert_all: Bool indicating new rows to be inserted that do not match any existing rows in the table + + Example Use Cases: + Case 1: Both Parameters = True (Full Upsert) + Existing row found → Update it + New row found → Insert it + + Case 2: when_matched_update_all = False, when_not_matched_insert_all = True + Existing row found → Do nothing (no updates) + New row found → Insert it + + Case 3: when_matched_update_all = True, when_not_matched_insert_all = False + Existing row found → Update it + New row found → Do nothing (no inserts) + + Case 4: Both Parameters = False (No Merge Effect) + Existing row found → Do nothing + New row found → Do nothing + (Function effectively does nothing) + + + Returns: a UpsertResult class (contains details of rows updated and inserted) + """ + + from pyiceberg.table import upsert_util + + if when_matched_update_all == False and when_not_matched_insert_all == False: + raise Exception('no upsert options selected...exiting') + + if upsert_util.has_duplicate_rows(df, join_cols): + + raise Exception('Duplicate rows found in source dataset based on the key columns. No upsert executed') Review Comment: ```suggestion raise ValueError('Duplicate rows found in source dataset based on the key columns. No upsert executed') ``` ########## pyiceberg/table/__init__.py: ########## @@ -1064,6 +1066,97 @@ def name_mapping(self) -> Optional[NameMapping]: """Return the table's field-id NameMapping.""" return self.metadata.name_mapping() + @dataclass(frozen=True) + class UpsertResult: + """Summary the upsert operation""" + rows_updated: int = 0 + rows_inserted: int = 0 + + def upsert(self, df: pa.Table, join_cols: list + , when_matched_update_all: bool = True + , when_not_matched_insert_all: bool = True + ) -> UpsertResult: + """ + Shorthand API for performing an upsert to an iceberg table. + + Args: + self: the target Iceberg table to execute the upsert on + df: The input dataframe to upsert with the table's data. + join_cols: The columns to join on. These are essentially analogous to primary keys + when_matched_update_all: Bool indicating to update rows that are matched but require an update due to a value in a non-key column changing + when_not_matched_insert_all: Bool indicating new rows to be inserted that do not match any existing rows in the table + + Example Use Cases: + Case 1: Both Parameters = True (Full Upsert) + Existing row found → Update it + New row found → Insert it + + Case 2: when_matched_update_all = False, when_not_matched_insert_all = True + Existing row found → Do nothing (no updates) + New row found → Insert it + + Case 3: when_matched_update_all = True, when_not_matched_insert_all = False + Existing row found → Update it + New row found → Do nothing (no inserts) + + Case 4: Both Parameters = False (No Merge Effect) + Existing row found → Do nothing + New row found → Do nothing + (Function effectively does nothing) + + + Returns: a UpsertResult class (contains details of rows updated and inserted) + """ + + from pyiceberg.table import upsert_util + + if when_matched_update_all == False and when_not_matched_insert_all == False: + raise Exception('no upsert options selected...exiting') + + if upsert_util.has_duplicate_rows(df, join_cols): + + raise Exception('Duplicate rows found in source dataset based on the key columns. No upsert executed') + + #get list of rows that exist so we don't have to load the entire target table + matched_predicate = upsert_util.create_match_filter(df, join_cols) + matched_iceberg_table = self.scan(row_filter=matched_predicate).to_arrow() + + update_row_cnt = 0 + insert_row_cnt = 0 + + try: + + with self.transaction() as txn: + + if when_matched_update_all: + + #function get_rows_to_update is doing a check on non-key columns to see if any of the values have actually changed + rows_to_update = upsert_util.get_rows_to_update(df, matched_iceberg_table, join_cols) Review Comment: The tests are not working on my end, but I think we can replace this with something as simple as: ```suggestion existing_matches_expr = upsert_util.create_match_filter(matched_iceberg_table, join_cols) rows_to_update = df.filter(expression_to_pyarrow(existing_matches_expr)) ``` ########## pyiceberg/table/__init__.py: ########## @@ -1064,6 +1067,78 @@ def name_mapping(self) -> Optional[NameMapping]: """Return the table's field-id NameMapping.""" return self.metadata.name_mapping() + @dataclass(frozen=True) + class UpsertResult: + """Summary the upsert operation""" + rows_updated: int = 0 + rows_inserted: int = 0 + info_msgs: Optional[str] = None + error_msgs: Optional[str] = None + + def upsert(self, df: pa.Table, join_cols: list + , when_matched_update_all: bool = True + , when_not_matched_insert_all: bool = True + ) -> UpsertResult: + """ + Shorthand API for performing an upsert to an iceberg table. + + Args: + df: The input dataframe to upsert with the table's data. + join_cols: The columns to join on. + when_matched_update_all: Bool indicating to update rows that are matched but require an update due to a value in a non-key column changing + when_not_matched_insert_all: Bool indicating new rows to be inserted that do not match any existing rows in the table + + Returns: a UpsertResult class + """ + + from pyiceberg.table import upsert_util + + if when_matched_update_all == False and when_not_matched_insert_all == False: + return {'rows_updated': 0, 'rows_inserted': 0, 'info_msgs': 'no upsert options selected...exiting'} + #return UpsertResult(info_msgs='no upsert options selected...exiting') + + if upsert_util.dups_check_in_source(df, join_cols): + + return {'error_msgs': 'Duplicate rows found in source dataset based on the key columns. No upsert executed'} + + #get list of rows that exist so we don't have to load the entire target table + pred = upsert_util.get_filter_list(df, join_cols) + iceberg_table_trimmed = self.scan(row_filter=pred).to_arrow() + + update_row_cnt = 0 + insert_row_cnt = 0 + + try: + + with self.transaction() as txn: + + if when_matched_update_all: + + update_recs = upsert_util.get_rows_to_update(df, iceberg_table_trimmed, join_cols) + + update_row_cnt = len(update_recs) + + overwrite_filter = upsert_util.get_filter_list(update_recs, join_cols) + + txn.overwrite(update_recs, overwrite_filter=overwrite_filter) + + + if when_not_matched_insert_all: + + insert_recs = upsert_util.get_rows_to_insert(df, iceberg_table_trimmed, join_cols) + + insert_row_cnt = len(insert_recs) + + txn.append(insert_recs) + + return { + "rows_updated": update_row_cnt, + "rows_inserted": insert_row_cnt + } + + except Exception as e: Review Comment: I'm also in favor of removing the block 👍 ########## pyiceberg/table/upsert_util.py: ########## @@ -0,0 +1,154 @@ + +# Licensed to the Apache Software Foundation (ASF) under one Review Comment: I'm pretty sure that the `lint` step will complain about this ```suggestion # Licensed to the Apache Software Foundation (ASF) under one ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org